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ABSTRACT
Nearly 15 years ago, Hellerstein, Haas and Wang proposed online
aggregation (OLA), a technique that allows users to (1) observe the
progress of a query by showing iteratively re�ned approximate an-
swers, and (2) stop the query execution once its result achieves the
desired accuracy. In this demonstration, we present G-OLA, a novel
mini-batch execution model that generalizes OLA to support gen-
eral OLAP queries with arbitrarily nested aggregates using e�cient
delta maintenance techniques. We have implemented G-OLA in
FluoDB, a parallel online query execution framework that is built
on top of the Spark cluster computing framework that can scale to
massive data sets. We will demonstrate FluoDB on a cluster of 100
machines processing roughly 10TB of real-world session logs from
a video-sharing website. Using an ad optimization and an A/B test-
ing based scenario, we will enable users to perform real-time data
analysis via web-based query consoles and dashboards.

1. INTRODUCTION
More and more organizations are increasingly turning towards

extracting value from huge amounts of data. In many cases, such
value primarily comes from data-driven decisions. Hundreds of
thousands of servers, in data centers owned by corporations and
businesses, log millions of records every second. �ese records
contain a variety of information—highly con�dential �nancial or
medical transactions, visitor information or even web content—
and require analysts to run exploratory queries on huge volumes
of data. For example, continuously analyzing large volumes of sys-
tem logs can reveal critical performance bottlenecks in large-scale
systems or analyzing user access patterns can give useful insights
about what content is popular, which in turn can a�ect the ad place-
ment strategies. While the individual use cases can be wide and
varied, many such scenarios value timeliness of query results over
perfect accuracy. Furthermore, in many such cases, the analysis is
a human-driven interactive process, and the accuracy needs or the
time constraints are usually not known a priori for they can dynami-
cally change based on unquanti�able human factors and the insights
gained during the analysis.
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A natural solution to support such interactive exploratory analy-
sis on large volumes of data is online aggregation [17] (OLA). With
OLA, given an aggregate query, the system presents the user with
some approximate butmeaningful result with an associated error es-
timate (e.g., con�dence intervals), as soon as it has processed a small
portion of the whole dataset.�e approximate result will be contin-
uously re�ned, at a speed comfortable to the user, while the system
is crunching a larger and larger fraction of the whole dataset. �is
process continues until either the user is satis�ed with the accuracy
of the query result and stops the query, or the system has processed
all the data.�is way, OLA gives the user a smooth observation and
control over processing, allowing her to make the accuracy-time
trade-o� on the �y, based on dynamic and unquanti�able factors
including accuracy needs and time constraints.
While being incredibly useful, existing OLA techniques are lim-

ited to simple SPJA (Select-Project-Join-Aggregation) queries.1 In
particular, existing OLA only works well for queries that are (prac-
tically) monotonic, i.e., whose result can be updated by only looking
at the new input tuples. Unfortunately, many aggregate queries, such
as the ones in popular OLAP workloads, are not monotonic. As an
example, consider a simpli�ed Sessions log, storing the web ses-
sions of users accessing a video-sharingwebsite, with three columns:
session_id, buffer_time, play_time.�e “Slow Bu�ering Im-
pact” (SBI) query (Example 1) can be used to �nd out how a longer
(than average) bu�ering time impacts user retention on the web-
site. While SBI is a fairly straightforward nested aggregate query,
note that it is non-monotonic as any re�nement of the inner aggre-
gate AVG(buffer_time) could cause to recompute the whole query.
�is makes it extremely costly for online processing.

Example 1 (Slow Buffering Impact).
SELECT AVG(play_time)
FROM Sessions
WHERE buffer_time >

(SELECT AVG(buffer_time)
FROM Sessions)

In this demonstration, we introduce the G-OLA (Generalized On-
LineAggregation) executionmodel for interactive exploratory anal-
ysis on large volumes of data. G-OLA supports the OLA interface
on general OLAP queries—nested aggregate queries with arbitrary
nesting and user-de�ned functions and aggregates. G-OLA accom-
plishes this by e�cient delta maintenance techniques that exploit
the convergence property of nested aggregate subqueries.
In addition to generalizing OLA, we argue that G-OLA can signif-

icantly simplify the design of Sampling-based Approximate Query
Processing (S-AQP) systems, by addressing one of the main chal-
1SPJA queries are those that consist of any combinations of select,
project and join operators followed by an aggregation operator.



lenges of these systems—that of predicting the optimal sample size
given a user-speci�ed accuracy or time constraint. Speci�cally, due
to the limitations of error estimation techniques, it is very hard for
existing S-AQP systems to accurately predict the smallest sample
size that could satisfy an accuracy criterion. On one hand, closed-
form error estimation techniques, such as the ones based on Cen-
tral Limit �eorem (CLT) or deviation inequalities (e.g., Hoe�d-
ing Bounds) can only predict sample size for simple SPJA queries.
On the other hand, resampling methods such as bootstrap [14], al-
though can estimate errors for complex SQL queries, lack the ability
to predict the sample size. Oneworkaroundproposed inBlinkDB [3,
4] is to bootstrap the query on di�erent sample sizes, and �t a pro�le
curve of error vs. sample size based on an extrapolated cost model.
However, there are several limitations with this technique. First, it
complicates the system design making it harder to tune and man-
age. Second, it wastes valuable resources and increases the response
time which goes against the very purpose of AQP. Finally, the hypo-
thetical model may not hold for complex queries. Similarly, �guring
out the optimal sample size given a time constraint requires building
an error-latency pro�le, which is both challenging and error-prone
for complex OLAP queries. On the contrary, G-OLA gives the user
a smooth observation and control of query processing, which does
not need to predict the sample size at all.
G-OLA is a mini-batch execution model for online processing

which randomly partitions the dataset into smaller batches of uni-
form size, and processes them one by one. G-OLA iteratively re�nes
the query results by computing a delta update on each mini-batch
of data. �e batch granularity is determined by how frequently the
user wants the query result to be updated. To avoid recomputing
the whole query during delta updates for non-monotonic queries
(as shown in Example 1), G-OLA carefully partitions the intermedi-
ate output of each subquery into two parts — the uncertain and de-
terministic sets. �e tuples in the deterministic set will not change
across mini-batches, while those in the uncertain set may change.
�erefore, during delta updates, we only need to consider the tuples
in the uncertain set and the new incoming mini-batch. �is par-
titioning is based on the observation that during online processing,
the running results produced by any aggregate subquery should con-
verge to the corresponding �nal result computed on the whole dataset,
and thus their variation decreases with the increase in data size. Since
the uncertain sets are very small in practice (as shown in Section 5),
G-OLA can achieve continuous and smooth feedback to the user.
We have implemented G-OLA in FluoDB, an online query execu-

tion framework running on Spark2 . FluoDB extends SparkSQL3 and
BlinkDB4 , and is backward compatible with Apache Hive5 . In this
demo, we will demonstrate FluoDB running on 100 Amazon EC2
nodes, providing interactive analysis over 10TB session logs from a
video-sharing website.�e audience will be able to interact with the
system through query consoles and dashboards in order to diagnose
issues related to ad revenue and user retention in real time. We will
also run a traditional SparkSQL engine in batch mode side by side
to show FluoDB’s superior performance and great user experience.

2. THE G-OLA EXECUTION MODEL
G-OLA is designed to support interactive aggregate OLAP queries

over massive sets of data. In particular, this new execution model
can enable any query processing framework to present the users
with meaningful approximate results (with error bars) that are con-

2https://spark.apache.org/
3https://spark.apache.org/sql/
4http://blinkdb.org
5https://hive.apache.org/

tinuously re�ned and updated during query execution. �is not
only completely alleviates the need for sampling the data in advance,
but also enables the user to observe the progress of a query and con-
trol its execution on the �y. G-OLA is capable of handling a wide va-
riety of SQL queries including the core relational algebra, standard
aggregates (such as COUNT, SUM, AVG, STDEV and QUANTILES),
user-de�ned functions (UDFs and UDAFs), subqueries and nested
aggregates.
In order to provide statistically unbiased approximate answers to

queries on an arbitrary granularity of data, we iteratively execute
the query on its input dataset in random order. Furthermore, G-
OLA also gives precise control to users in specifying only a subset
of input relations that needs to be processed in an online fashion.
For example, if the SBI query were to contain more than one input
relations, the user could explicitly specify to stream through a large
fact table like Sessions while reading smaller dimension tables in
entirety. By default, G-OLA supports partition-wise randomness by
randomly picking data partitions to process. �is works well when
the attributes needed in the query are not correlated with the parti-
tions. However, if this assumption does not hold, G-OLA also pro-
vides data pre-processing tools to randomly shu�e the entire input
dataset, so that any subset of the shu�ed data is a uniform sample
of the original dataset. Similar to the POSTGRES-OLA implementa-
tion [17], the users can stop the execution at any timewhen the result
meets their desired accuracy criterion.

2.1 Mini-Batch Execution Model
G-OLA uses a mini-batch execution model for online processing.

Speci�cally, we randomly partition the dataset into multiple mini-
batches of uniform size, and process through the data by taking a
single mini-batch at a time.�e batch granularity is determined by
how frequently the user wants the query result to be updated. At
any point during query processing, G-OLA presents the user with
the approximate query result and its associated error estimate (e.g.,
con�dence interval) as if the query was computed on all the mini-
batches seen so far.
When processing each mini-batch of data, G-OLA incrementally

maintains the query result previously obtained by computing a delta
update on the incoming data. To compute this delta update e�-
ciently, we carefully partition the intermediate output at each oper-
ator in the query plan into two parts — the uncertain and the deter-
ministic sets. With very high probability, tuples in the deterministic
set are unlikely to change as we re�ne the query result. In contrast,
the uncertain set of tuples are likely to change when we recompute
the query on more data.�erefore, when we process the next mini-
batch, we only need to consider the tuples in the uncertain set and
the ones in the new mini-batch to compute a delta update. We will
explain our delta maintenance techniques in detail in Section 3.

2.2 Query Semantics
�is subsection gives a brief overview of the query execution se-

mantics in G-OLA. Consider that the user submits a query Q on a
dataset D. During query processing, the system �rst randomly par-
titions D into k parts ∆D1 ,⋯, ∆Dk , where ∣∆D1 ∣ = ⋯ = ∣∆Dk ∣. At
the i-th iteration, 1 ≤ i ≤ k, it processes partition ∆D i , and returns
Q(D i , ki ) as an approximation to the �nal result Q(D), along with
the error estimation (e.g., a con�dence interval) of Q(D i , ki ), where
D i is the dataset ∆D1 ∪ ⋯ ∪ ∆D i ; Q(D i , ki ) is simply evaluating Q
on enhanced D i where each tuple is annotated with a multiplicity
m =

k
i . �is annotated multiplicity means that seeing a tuple in

∆D1 ∪ ⋯ ∪ ∆D i is roughly equivalent to it being seen m times in
D (as ∆D1 ∪ ⋯ ∪ ∆D i is a random sample from D). Computing
Q(D i , ki ) follows the standard multiset semantics that are exposed



in many commercial databases. For the sake of simplicity, we will
use Q(D i) and Q(D i , ki ) interchangeably throughout the paper.
In G-OLA, we use the bootstrap [14] to estimate the con�dence

interval of Q(D i) with respect to Q(D), that consists of a sim-
ple Monte-Carlo procedure—it repeatedly carries out a sub-routine
called a trial. Each trial generates a simulated database, say D̂ i , j ,
which is of the same size asD i (by sampling ∣D i ∣ tuples i.i.d. fromD i
with replacement), and then computes query Q on D̂ i , j .�e collec-
tion {Q(D̂ i , j)} from all the bootstrap trials forms an empirical dis-
tribution, based on which a con�dence interval can be computed.

3. DELTA MAINTENANCE IN G-OLA
In this section, we describe G-OLA’s deltamaintenance techniques

in detail. As an illustration, consider answering the SBI query (Ex-
ample 1) on the dataset shown in Figure 1(b). Figure 1(a) depicts the
query plan of the SBI query.
To process the SBI query, G-OLA partitions the Sessions rela-

tion into k mini-batches {∆D1 ,⋯, ∆Dk} where each ∆D i is of size
n, e.g., ∆D1 = {t1 ,⋯tn} and ∆D2 = {tn+1 ,⋯t2n} and so on. G-
OLA processes through these chunks incrementally, delivering an
approximate result of the SBI query (denoted byQ) at the i-thmini-
batch as if Q is computed on D i = ∆D1 ∪⋯∪∆D i (See Section 2.2).
However, instead of computing Q(D i) directly, we treat D i as D i−1
updated by inserting new tuples ∆D i (i.e., D i = D i−1 ∪ ∆D i), and
compute Q(D i) by applying a delta query to the result obtained in
the (i − 1)-th iteration (i.e., Q(D i) = Q(D i−1)+ ∆Q(D i−1 , ∆D i))6 .
�e intuition is that computing ∆Q(D i−1 , ∆D i), and using the re-
sult to update Q(D i−1), would be much faster than recomputing
Q(D i) from scratch, enabling quicker feedback to the user. Simi-
lar intuition is shared by online aggregation [17] and the work on
incremental view maintenance [5, 16, 19].

(a)

session_id buffer_time (s) play_time (s)
t1 s1 36 238
t2 s2 58 135
⋯ ⋯ ⋯ ⋯

tn sn 17 617
tn+1 sn+1 56 194
tn+2 sn+2 19 308
⋯ ⋯ ⋯ ⋯

t2n s2n 26 319
⋯ ⋯ ⋯ ⋯

(b) Sessions

Figure 1: (a)�e query plan of the SBI query in Example 1, and (b)
an example of the Sessions relation.

3.1 Issues with Classical Delta Maintenance
Unfortunately, the above intuition does not always hold: for com-

plex OLAP queries involving nested aggregates, e.g., the SBI query,
computing ∆ iQ(D i−1 , ∆D i) using classical delta maintenance is no
better than computing Q(D i).

�is is due to the non-monotonicity of some relational operators.
In particular, the aggregation operator, which is of extreme impor-
tance in OLAP, is blocking in nature [7], i.e., aggregation will not
6 Here, + is a way of combining a relation with a change to it. �is
could include inserting new tuples, deleting old tuples, or updating
an existing tuple with new attribute values.

produce an accurate answer until it sees all the input. �is block-
ing nature of aggregationmakes deltamaintenance ofOLAP queries
very challenging—as more and more data comes in, the query en-
gine may �ip its previous decision, resulting in completely recom-
puting the query on all the data that was seen previously.
For instance, consider the �rst two mini-batches of the SBI

query. In the �rst batch, computing the inner aggregate query
AVG(buffer_time) on D1 results in 37. As a consequence, tuple t1
is �ltered out as its buffer_time is lower than the running average
bu�ering time. However, in the second batch, a�er taking ∆D2 into
account, AVG(buffer_time) is updated to 35.3, which in turn re-
quires t1 to be selected. Unfortunately, since t1 is already dropped in
the �rst batch, the query engine has to read through D1 again in or-
der to compute the correct answer for the second batch. Evenworse,
such wasteful re-computation may recur at each batch. In general,
at the i-th batch, we need to compute the query on all the tuples
seen previously (i.e., D i−1) alongside the new data ∆D i . �erefore,
the update cost increases linearly with batches, hindering continu-
ous update. Roughly, processing through all the kmini-batches will
process O(k2) ⋅ n of data in total, which could be much larger than
the original dataset (of size kn).

3.2 Discovering Certainty in Uncertainty
We have seen that due to their blocking nature, the running re-

sults of aggregates that are computed on samples, are approximate
and uncertain. �is makes complex OLAP queries with nested ag-
gregates non-monotonic, making simple delta maintenance tech-
niques extremely ine�cient. However, there is a key principle be-
hind all S-AQP techniques—running aggregate results will eventu-
ally converge to the ground truth (i.e., the aggregate result com-
puted on the full dataset) as the sample size increases. �erefore,
as the query engine processes through the mini-batches, the inter-
mediate aggregate results will concentrate in a relatively small range
around the ground truth, and this range will shrink as more and
more batches are processed.
G-OLA utilizes this important property in developing an e�cient

delta maintenance technique. As an example, assume that all the in-
termediate results of AVG(buffer_time) throughout its online pro-
cessing are within the range of 37 ± 8.1. �is implies that across all
mini-batches, tuple t2 will be selected, while tuple tn will be �ltered
out. For these tuples, the decisions made by the query engine will
never change across all mini-batches. �us, if we know this fact a
priori, we can prune these non-uncertain tuples during online pro-
cessing. Formally, for an uncertain7 attribute u in an intermediate
tuple, we de�ne its variation range as the set of all the possible values
that u may take during the online execution, denoted byR(u). For
simplicity, we uniformly de�ne the variation range of a determinis-
tic value d as itself, i.e.,R(d) = {d}.
Next, for simplicity, we will explain G-OLA’s delta-maintenance

algorithm by �rst assuming that these variation ranges are given,
and then explain how these variation ranges can be approximated
in practice. In the i-th mini-batch, at any predicate x θ y involving
uncertain values,8 G-OLA classi�es the input tuples into two sets: the
uncertain set U i in which tuples satisfyR(x) ∩R(y) ≠ ∅, and the
deterministic set C i in which tuples satisfy R(x) ∩R(y) = ∅. For
instance, ifR(AVG(buffer_time)) = [28.9, 45.1], then t2 , tn ∈ C1 ,
while t1 ∈ U1 . Clearly, for the tuples in U i , the predicate may eval-
uate to di�erent answers in di�erent batches, while for the tuples in
C i , the predicate will evaluate to the same answer across all batches.
�erefore, in batch (i − 1), we cache U i−1 ; and in batch i, instead
7An attribute is uncertain if it is computed by a nested aggregate
subquery.
8θ is some comparison operator.



of computing Q(D i) from scratch, G-OLA only needs to compute a
delta update based on U i−1 and ∆D i .
Of course, the variation ranges cannot be known until we have

�nished the query. In practice, G-OLA approximates the variation
ranges using running estimates. Recall that we use bootstrap to es-
timate the accuracy of the running query results. As a by-product of
this process, we can obtain a set of bootstrap outputs û for each un-
certain value u, where û is shown to be an accurate approximation
of the true distribution of u9 . In practice, we use the range de�ned
by R̂(u) = [min(û)− ε,max(û)+ ε] to approximateR(u), where
ε is a slack variable which can controlled by the user. R̂(u)may fail
in the sense that some running value of u or a bootstrap output in û
exceed the variation range in some batch, which will result in incor-
rect query answers. However, the system can detect this failure, and
can correct the answer by recomputing the query on the data seen
since the last mini-batch with the correct variation ranges.�e user
can also decrease the chance of recomputation by setting a larger ε
(at the cost of increasing the size of the uncertain sets). In practice,
setting ε to the standard deviation of û achieves a good balance in
controlling the probability of recomputation and reducing the size
of the uncertain sets.

3.3 Lineage and Lazy Evaluation
In order to correctly compute the delta update in batch i, U i−1

cached in batch i− 1 has to be updated with the latest values. For in-
stance, consider the above example where tuple t1 is classi�ed inU1 .
In batch 2, t1 has to be updated with the latest AVG(buffer_time)
in order to evaluate the predicate correctly.
To e�ciently support this update and avoid regenerating the un-

certain tuples from scratch, G-OLA keeps track of all the values used
to compute the uncertain attributes in a tuple, i.e., its lineage, and
propagates the lineage with each tuple. During delta maintenance,
we update the uncertain set by re-evaluating the operation on the
lineage carriedwith each uncertain tuple, and this evaluation is done
lazily when the corresponding values are accessed.
However, since aggregates are computed from a set of values,

propagating the lineage of aggregates will cause an explosion in the
storage and networking overhead. We optimize the lineage prop-
agation by dividing a query into multiple lineage blocks. A lin-
eage block is a maximal subtree of the query plan that is an SPJA
(Select-Project-Join-Aggregation) block, i.e., a subtree consisting of
any combinations of select, project and join operators followed by
an aggregation operator. It is maximal in the sense that extending
the subtree with any node in the query plan will violate this require-
ment. As an example, the query plan shown in Figure 1(a) can be di-
vided into two lineage blocks: {¬,}, {®,¯,°,±}. G-OLA propa-
gates lineage within each lineage block, while simply broadcasts the
latest aggregate results between lineage blocks, thus bounding the
overall cost of lineage propagation.

4. SYSTEM ARCHITECTURE
We have implemented G-OLA in FluoDB. FluoDB is a parallel

online query execution framework that is build on top of Spark-
SQL and BlinkDB, and enables us to be backwards compatible with
Apache Hive in terms of both storage and query language. Under-
neath, it runs on Spark, a distributed computing framework that
supports e�cient in-memory computation. Figure 2 depicts the
system architecture of FluoDB. FluoDB extends the optimization
framework of SparkSQL, poissonized resampling based error esti-
mation techniques of BlinkDB and the computation infrastructure
9We refer interested readers to [3] for the implementation details of
bootstrap.

Figure 2:�e system architecture of FluoDB.

of Spark, by adding three major components to empower online ex-
ecution:

1. Online Query Compiler. �e online query compiler com-
piles the query into a meta query plan, which when plugged
with di�erentmini-batches of data, turns into a series ofmini-
batch queries. In this series, each mini-batch query depends
on the state computed in the previous iteration, and computes
delta-updates on the results of its predecessor.

2. Query Controller. �e query controller is in charge of
partitioning the input data into mini-batches, and generat-
ing/scheduling the series of mini-batch queries given a meta
query plan. It also manages, caches and distributes the inter-
mediary uncertain sets during each iteration. Since our delta-
maintenance algorithm (see Section 3) relies on the correct-
ness of the running approximate variation ranges, the con-
troller monitors the correctness of all the variation ranges as
well, and schedules recomputing jobs to correct the query re-
sults when a failure is detected.

3. Online Query Engine.�e online query engine implements
a set of online relational algebra operators on Spark.

5. PERFORMANCE
In this section, we brie�y discuss the performance of G-OLA. Our

experiments are based on a synthetic 100GB dataset from the TPC-
H benchmark10 , and a 100GB subset of a 10TB anonymized real-
world video content distribution workload from Conviva Inc.11 To
simplify random partitioning during mini-batch execution, we de-
normalize the TPC-H data into a single fact table. �e Conviva
dataset contains a single de-normalized fact table. Our queries are
based on a subset of the TPC-H benchmark queries and the original
Conviva query trace.
We compare the performance of G-OLA with existing online

processing techniques in OLA [17] and incremental view mainte-
nance work [5, 16, 19] by processing a set of illustrative queries in
mini-batches of 1GB each. To clearly demonstrate the expressive-
ness and e�ectiveness of G-OLA, we focus only on complex OLAP
queries with nested aggregates. Queries C1, C2, C3 are based on
the Conviva query trace and compute statistics (such as histograms
of play_time and join_failure_rate) of sessions with abnor-
mal behaviors (e.g., thosewith a longer than average bu�ering time).
Queries Q11, Q17, Q18, Q20 are from the TPC-H benchmark.12
Figure 3(a) demonstrates a typical query process in G-OLA using

TPC-H Q17. As one can see, any traditional query engine will only
10http://www.tpc.org/tpch/
11http://www.conviva.com/
12 Please note that while we retained the original structure of the
TPC-H queries, we had to modify some very selective WHERE and
GROUP BY clauses in the original queries to avoid undesirably sparse
results for small samples of data.
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Figure 3: (a)�e relative standard deviation vs. query time curve
delivered by G-OLA onTPC-HQ17. We plot the values for the �rst 10
mini-batches, and then for brevity, the 20th, 30thmini-batch and so
on. (b)�e ratio of query times of the �rst 10 batches of G-OLA and
classical delta maintenance (CDM) techniques. Note that the ratio
of query times for each iteration grows linearly with the number of
iterations.

be able to deliver an answer a�er processing the entire dataset, which
in this case, would incur 2.34 minutes latency (marked by the ver-
tical bar). On the other hand, G-OLA can deliver an approximate
answer in 2.3 secs (i.e., only in about 1.6% of the whole query time).
Furthermore, G-OLA continuously re�nes the answer at a very user-
friendly pace of roughly every 2.5 seconds. It is worth noting that
while G-OLA incurs an additional 60% overhead in processing the
whole dataset as compared to the baseline (primarily due to the error
estimation overheads), it enables the user to make a smooth trade-
o� between error and latency by allowing her to stop the query ex-
ecution at any time. For instance, if the user is satis�ed with an ac-
curacy of say, 2% relative standard deviation, she can stop the query
at 16 seconds, which is almost 10× faster than a batched execution.
We also compare the deltamaintenance techniques in G-OLAwith

the classical delta maintenance techniques.�e results for the query
response time for the �rst 10 mini-batches (of size 1GB each) are
shown in Figure 3(b). We plot the ratio of the query times spent by
classical delta maintenance algorithms (CDM) and G-OLA for each
batch. While these queries and datasets cannot necessarily form
a representative sample of the incredibly wide range of real-world
OLAPqueries and datasets, we observe thatG-OLA signi�cantly out-
performs the classical delta-maintenance algorithms. In the classi-
cal algorithms, every update on an inner aggregate subquery causes
the engine to recompute the query on the entire data that was pre-
viously processed, while G-OLA could e�ectively limit the size of the

Figure 4: Sample screenshots of an interactive web-based console
that will allow attendees to launch custom online SQL queries on
the underlying data.

uncertain set of tuples in each iteration, achieving almost constant
query time for each iteration.

6. DEMONSTRATION DETAILS
Our demonstration scenario places the attendees in the shoes of

a Data Scientist at MyTube Inc., a popular (and imaginary) video-
sharing website that wants to adapt its policies and decisions in near
real time to maximize ad revenue and improve user retention. My-
Tube collects a variety of user metrics (ranging from sessions IDs,
content IDs, video start/stop times or geographical locations) that
it aggregates across multiple dimensions to continuously derive in-
sights about its viewers.
As part of this demo, the attendees will be able to interact with

a web-based dashboard that will compute and plot a number of ad
popularity and user retentionmetrics while cycling through various
user groups and/or geographical regions. Since each of these met-
rics are computed by fairly complex queries on massive amounts of
data, the dashboardwill feature approximate answerswith error bars
that will get progressively re�ned with time. As shown in Fig. 4, we
will also feature a powerful web-based console that would allow the
attendees to launch arbitrary SQL aggregate queries on the under-
lying data. For a side-by-side comparison of performance and user
experience, we will also demonstrate a traditional SparkSQL engine
running in batched execution mode on the same dataset.

6.1 Data Characteristics
Our 10 TB workload trace would comprise of a de-normalized

fact table of session logs froma video-sharingwebsite.�is tablewill
consist of billions of rows and hundreds of columns (ranging from
sessionIDs, contentIDs, adIDs, and video or ad start/end times), and
will be stored in HDFS (or partially cached in memory) across 100
Amazon EC2 machines. Each tuple in the table will correspond to a
session log entry, such as a video or an ad being played.

6.2 Demonstration Scenarios
To demonstrate the power and expressiveness of G-OLA in terms

of the types of queries it can support, we will feature two real-time
data analysis scenarios that are closelymodeled a�er real-world use-
cases:
Real-time Ad Optimization. In this scenario, MyTube Inc. wants
to adapt its policies and decisions in near real time to maximize its
ad revenue.�is involves aggregating over a number of user metrics
across multiple dimensions to understand how an ad performs for
a particular group of users or content at a particular time of day.



Performing such analysis quickly is essential, especially when there
is a change in the environment, e.g., new ads, or a new page layout.
�e ability to re-optimize the ad placement everyminute as opposed
to every day or week o�en leads to a material di�erence in revenue.
A/BTesting. In this scenario,MyTube Inc. aims to optimize its busi-
ness by improving user retention, or by increasing their user engage-
ment. O�en this is done by using A/B testing to experiment with
anything from new content to slight changes in the number and/or
the duration of ads that are shown. While the number of combina-
tions and changes that one can test is daunting, the ability to quickly
understand the impact of various tests and identify important trends
is critical to rapidly improving the business.
In these and many other scenarios, the queries are unpredictable

(because the exact problem, or the query is not known in advance)
and quick response time is essential as data is changing quickly, and
the potential pro�t is inversely proportional to the response time. In
this demo, we will speci�cally focus on these scenarios.

7. RELATED WORK
OnlineAggregation. Online aggregation [17] and its successors [13,
20] proposed the idea of allowing users to observe the progress of
aggregation queries and control the execution on the �y. �e users
can trade accuracy for time in a smooth manner. However, online
aggregation is limited to simple SPJA queries without any support
for nested aggregation subqueries.
Sampling-based Approximate Query Processing. �ere has been
substantial work on using sampling to provide approximate query
answers, many of which [2, 4, 8, 11, 21] focus on constructing
the optimal samples to improve query accuracy. STRAT [11], Sci-
BORQ [21], Babcock et al. [8] and AQUA [2] construct and/or pick
the optimal strati�ed samples given a �xed time budget, but do not
allow users to specify an error bound for a query. BlinkDB [4] sup-
ports sample selection given user-speci�ed time or accuracy con-
straints. Such selection relies on an error-latency pro�le, which is
built for a query by repeatedly trying out the query on smaller sam-
ple sizes and extrapolating the points.
Incremental View Maintenance. Incremental view maintenance
(IVM) is a very important topic in database view management, and
has been studied for over three decades. IVM focuses on a similar
problem—computing a delta update query when the input data is
updated. Maintaining SQL query answers have been studied in both
the set [9, 10] and bag [12, 16] semantics. Computing the delta up-
date query has been studied for query with aggregates [16, 19] and
temporal aggregates [24]. However, majority of work in this area
only focuses on simple SPJA queries without nested and correlated
aggregation subqueries. More recently, DBToaster [5] has investi-
gated higher-order IVM and support for nested queries. However,
for queries with nested aggregates, the delta update query obtained
by higher-order IVM is o�en no simpler than the original query.
G-OLA’s delta-maintenance technique doesn’t have this limitation.
Data Stream Processing. Data stream processing [1, 15, 18, 22]
combines (1) incremental processing (e.g., sliding windows) and (2)
sublinear space algorithms for handling updates. �ese techniques
mainly rely onmanual programming and composing, and thus have
limited adoption and generalization. �ere has also been work on
one-pass streaming algorithms [6, 23] for single layer of nested ag-
gregate queries that rely on building correlated aggregate summaries
on streams of data. However, it is non-trivial to automatically build
these summaries for queries with arbitrary levels of nesting and/or
user de�ned aggregates. G-OLA on the other hand provides au-
tomatic incremental processing to general SQL queries, including
those with multiple levels of nesting and arbitrary aggregates.
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