
Lattice: A Scalable Layer-Agnostic Packet

Classification Framework

Sameer Agarwal
Mosharaf Chowdhury
Dilip Joseph
Ion Stoica

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2011-96

http://www.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-96.html

August 24, 2011

Copyright © 2011, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

1

Lattice: A Scalable Layer-Agnostic Packet
Classification Framework

Sameer Agarwal, Mosharaf Chowdhury, Dilip Joseph, and Ion Stoica

Abstract—Despite widespread application, packet classification
is implemented and deployed in an ad-hoc manner at differ-
ent layers of the protocol stack. Moreover, high speed packet
classification, in presence of a large number of classification
rules, is both resource and computation intensive. We propose a
scalable layer-agnostic packet classification framework (Lattice)
that generalizes classifier design and enables offloading part of
computation and memory requirements to collaborators (e.g.,
end hosts). Lattice eliminates per-packet classification and per-
flow states in classifiers to increase scalability and decreases
vulnerability to state-based DoS attacks. Furthermore, Lattice is
incentive compatible in that collaborators cannot get better ser-
vice by lying, and it incentivizes deployment by giving preferential
treatment to packets carrying Lattice-related information. Finally,
Lattice-enabled classifiers remain semantically equivalent to their
unmodified counterparts. To evaluate Lattice, we have built a
prototype using the Click software router and implemented mul-
tiple Lattice-enabled classifiers. Lattice-enabled firewalls perform
at least 2× faster than unmodified counterparts and scale well
with the increasing number of classification rules.

I. INTRODUCTION

PACKET classification is an integral part of today’s net-
works. On the path from source to destination, a packet

is typically classified several times based on multiple header
fields and/or its content. Traditionally, firewalls classify the
packet to decide whether to drop it or not, routers may
classify it to determine its next hop and its QoS class, and
load balancers use classification to decide appropriate destina-
tion servers. In software defined networks (SDNs), switches
classify packets to forward them based on the installed flow
entries, and it is common for large enterprise networks to
employ complex application-aware access control mechanisms
to classify ingress/egress traffic. Finally, modern datacenters
use load balancers to classify tens of thousands of flows.

A classification solution needs to tackle three challenges:
scalability, manageability, and the semantic gap between the
layer that defines the unit of classification (e.g., browser
session) and the component that performs classification (e.g.,
load balancer). We elaborate on these challenges next.

As noted by Gupta and McKewon [14], multi-field packet
classification at layer-4 reduces to the point location problem
in computational geometry. This imposes a hard trade-off on
the solution space: one can develop an algorithm that is either
memory or space efficient, but not both. Specialized parallel
hardware, such as TCAMs, can be leveraged to get around
this tradeoff. However, these hardware based solutions are
typically expensive and power-hungry [24]. The emergence
of sophisticated applications such as content filtering requires
wildcard matching, which is more complex than the prefix-

TABLE I
PACKET CLASSIFICATION ACROSS DIFFERENT LAYERS OF THE NETWORK

PROTOCOL STACK

Layer Network service/functionality
Link (2.5) Switching, MPLS
Network Forwarding
Transport Filtering, IntServ, DiffServ
Application Load balancing, Intrusion detection

End host A
FTP

Server B
Load

balancer L1
Load

balancer L2
Firewalls

F1

F2

Fig. 1. Coordinating multiple classifiers for firewall load balancing. Load
balancers L1 and L2 must select the same firewall instance on both directions
of a flow.

based and range-based matching typically employed by layer-
4 classifiers. For example, in a recent benchmark, an F5 load
balancer [2] saw a drop of 78% in the number of connec-
tions/second it can process and a 30% drop in throughput when
performing layer-7 (e.g., HTTP) versus layer-4 classification.

The ad-hoc deployment of packet classifiers makes it hard
to manage and configure them. Consider the pair of firewalls
and load balancers in Figure 1. Assuming the firewalls require
per-flow information to make decisions, the load balancers
must select the same firewall instance on both the forward
and reverse directions of a flow. To achieve such coordination,
today’s load balancers have to use ad-hoc mechanisms that
leverage physical connectivity [19]. Such solutions are prone
to failures and misconfigurations.

Finally, there is a semantic gap between end points and
entities performing classification. Consider a load balancer
that wishes to forward all TCP connections in a user’s HTTP
session to the same server. In this case, the client has more
semantic context to identify these connections than the load
balancer itself. In fact, if the client is behind a NAT or an
HTTP proxy, it might be impossible for the server to identify
all TCP connections belonging to the same user session.

Over the past decade, several solutions have been proposed
to address these challenges; however, they typically work
only in the context of a single layer and of a single service.
Even when they follow the same approach, these solutions
employ different mechanisms and deployment strategies. For
instance, to improve classification performance and to reduce
semantic gap, several solutions have proposed pushing packet
classification tasks to the edge nodes that handle less traffic

2

and have more semantic context. Examples of such solutions,
include MPLS, DiffServ, and HTTP session identification
using cookies. The lack of architectural support for a general
mechanism forced each of these solutions to devise their own
set of protocols.

In this paper, we propose Lattice, a unified classification
framework to efficiently and scalably support a variety of
network applications and services. It provides basic yet pow-
erful primitives on which complex classification protocols can
be built. In particular, Lattice uses verifiable, confidential,
and non-transferable Fate-Carrying Labels (FCLs) that enable
classifiers to safely share classification related information
not only with end hosts and edge routers (referred to as
collaborators) but also with other classifiers. To enforce trust
across administrative boundaries, Lattice uses a capability-
based protocol [27], [28]. It builds on three key ideas:

1) Layer-Agnostic Classification: Lattice does not limit
itself to a particular layer in the network stack. It allows
developers to effortlessly build and configure traditional
single layer classification protocols such as firewalls and
load balancers as well as complex application-aware
access control protocols that leverage information from
multiple layers in the network stack.

2) Sharing Semantic Context: Lattice can effectively lever-
age the functionality of various network components
that operate at different levels in the protocol stack
by efficiently facilitating communication between them
with negligible overhead (see Figure 1). This enables
layer-agnostic classification protocols to easily leverage
semantic information from multiple network components
operating at different layers.

3) Classify Early; Verify Later: A classifier built on Lattice
performs classification only on the first few packets of a
flow to assign it an FCL. This label is then communicated
back to end hosts or edge routers and remains valid for a
small session interval. During this session, the classifier
simply verifies the label for every packet. This scheme
allows protocols built on Lattice to scale well with several
thousands of classification rules.

Lattice preserves the semantics of existing classifiers. Fur-
thermore, Lattice is incentive compatible in that a sender
cannot get better service by lying, and provides incentives
for deployment, by giving a preferential treatment to labeled
packets.

We have implemented the Lattice framework in C++ on
Click [18]. To highlight the key components of its functional-
ity, we have built a variety of existing network applications on
top of Lattice with minor modifications to their source code.
Our experience with Lattice-enabled applications provides
several insights into the benefits of using this framework: a
Lattice-enabled firewall can achieve 2× more throughput than
a regular firewall, and it can provide additional 2× to 3×
gain with line-speed hashing. The performance improvement
provided by Lattice increases with the complexity of the clas-
sification task. Finally, per-packet overhead at collaborators
for adding FCLs is less than 1µs, and Lattice does not require
any per-flow state in classifiers.

While Lattice improves performance and scalability of a

wide range of classifiers, more dynamic middleboxes like
intrusion detection systems or IDSes cannot benefit from using
Lattice. Unlike firewalls, IDSes match each and every packet
of a flow to actively learn about its characteristics and can
change the action corresponding to that flow in the middle of
its duration. This precludes Lattice’s model of classifying only
the initial packets.

The rest of the paper is organized as follows. Section II
provides an overview of the Lattice classification model. We
present the architecture of Lattice-enabled classifiers in Sec-
tion III, discuss FCLs and their characteristics in Section IV,
and describe the Lattice signaling protocol in Section V.
Next we discuss some additional design and performance
issues in Section VI. Section VII and Section VIII provide
Lattice prototyping details followed by evaluation results.
We discuss deployability, backward compatibility, and trust
concerns of Lattice in Section IX, compare it with related
work in Section X, and conclude in Section XI.

II. OVERVIEW

Lattice provides a generic framework that enables a classi-
fier to securely leverage upstream nodes to significantly reduce
its computation and memory requirements, and thus improve
scalability.

In Lattice , network entities can have two different roles:
classifiers and collaborators. Classifiers are network entities
like routers, firewalls, load balancers, and other middleboxes
that traditionally perform packet classification. Collaborators
aid classifiers by performing classification tasks on their
behalf. In a datacenter network, examples of collaborators
may include end hosts or rack switches that convey flow-
level information to aggregate and core switches for better
load balancing. In traditional networks, end hosts that provide
HTTP cookies to web load balancers to aid them in session
identification and edge routers in a DiffServ domain that set
code points in packet headers to be used by core routers in
packet processing can act as collaborators. Note that in the
latter instance, an edge router is both a collaborator and a
classifier, as it classifies packets to determine their next hop,
in addition to helping core routers.

Lattice enables a simple classification model. As illustrated
in Figure 2, collaborators advertise their classification capabil-
ities using a signaling protocol (Step 1). Based on the first few
packets, a classifier classifies the flow (Steps 2a and 2b) and
informs the originator collaborator about what classification
label the classifier expects to find (e.g., QoS:q1, WebSess:1) in
subsequent packets (Step 3). The collaborator maintains label
information using soft state and embeds requested labels in
later packets. The downstream classifier verifies the label and
acts on the actions encoded in it to speed up its classification
operations (Steps 4a and 4b).

The overall proposal consists of the following three com-
ponents that we discuss in subsequent sections:

1) Design and characteristics of a Lattice-enabled classifier
(Section III).

2) Verifiable Fate-Carrying Labels (FCLs) that carry classi-
fication actions and signaling information (Section IV).

3

Webserver 1

Webserver 2

QoS-enabled router

Capability TCPFLow, WebSess 1.
2a. ClassReq QoS:q1

2b. ClassReq QoS:q1, WebSess:1

3. ClassRsp QoS:q1, WebSess:1
End host

A
(a) Control Plane

Load balancer QoS-enabled router

4a.

End host A

(b) Data Plane

QoS:q1, WebSess:1 Payload 4b.

Webserver 1

Webserver 2

QoS:q1, WebSess:1 Payload

Load balancer

Fig. 2. Packet classification using Lattice. Classifiers let the collaborator
know which labels to put during the initialization phase (Steps 1-3). Later,
the classifiers use the labels on packets for faster classification (Step 4).

3) A robust signaling protocol that coordinates classifiers
and collaborators using Lattice headers (Section V).

III. ARCHITECTURE OF A Lattice CLASSIFIER

Existing middleboxes employing packet classification pri-
marily consist of two components: the classifier itself and
a database of classification rules (see the gray box in Fig-
ure 3(a)). Upon a packet’s arrival, the classifier matches the
packet to an existing class, and then processes the packet
according to the class’ rule. Unfortunately, as packet classi-
fication becomes more sophisticated and the number of rules
increases, classifiers become more complex and expensive.

A. Components

To address these challenges, Lattice introduces a fast path
for the labeled packets. In particular, a Lattice-enabled classi-
fier (Figure 3(a)) consists of a label generator and a label
verifier in addition to the basic classification component
(Figure 3).

1) Basic Classification Component: A Lattice-enabled clas-
sifier is built on top of a standard packet classifier that
performs classification of unlabeled packets (normally the
initial packets of a flow). The basic classifier may use any
existing classification algorithm or hardware.

2) Label Generator: A packet without an FCL must go
through the normal classification process as in an existing
classifier before reaching the label generator. If the classifier
does not decide on dropping the packet and the unlabeled
packet initializes a new flow, the label generator will assign it
an FCL for that flow. If the unlabeled packet does not initialize
a new flow, the label generator will initiate the process of
setting up a new label and will convey this information to
the upstream collaborator using a resignaling protocol. Such a
scenario may occur due to path changes or due to the absence
of a Lattice collaborator on the upstream path.

In case of congestion, a Lattice-enabled classifier will drop
the unlabeled packets first.

Existing Packet
Classifier

Rules

Label
Verifier

Label
Generator

is
labeled?

Yes

No

(a) Lattice-enabled classifier

New
flow?

Add
Label

Resig.

No

Yes Verify
Label

Drop

Yes

No

Fa
ile

d

New
flow?

(b) Label generator

New
flow?

Add
Label

Resig.

No

Yes Verify
Label

Drop

Yes

No

Fa
ile

d

New
flow?

(c) Label verifier

Fig. 3. Logical architecture of a Lattice-enabled classifier and its components.

3) Label Verifier: Packets with FCLs take a fast path that
involves only a hash computation for label verification – an
operation that can be performed at line-speed using existing
hardware [20]. Packets containing malformed/wrong FCLs are
summarily dropped.

B. Characteristics and Workflow

Lattice has the following desirable properties:
• Preserve semantics of existing classifiers: If a packet is

not labeled, it is simply processed by the basic classifier.
If the packet is labeled, the verifier will apply the same
action to the packet (as the basic classifier did) based on
the information in the label.

• Incentive compatibility: A sender has no incentive to lie,
because it cannot get a better service by doing so. If
a Lattice-enabled classifier approves a flow, the flow’s
source has the incentive to put the labels in the flow’s
packets, as these packets are treated preferentially by
the Lattice-enabled classifier. Otherwise, if the Lattice-
enabled classifier does not approve a flow, the flow’s
source gains nothing by lying about it. Indeed, if the
source decides to put a bogus label in the packets, the
verification will fail and the packets will be dropped.
If the source decides to not put any label at all in the
packets, the packets will be processed on the slow path
by the basic classifier and again dropped.

• Deployment incentives: Since upon congestion, a Lattice-
enabled classifier drops the unlabeled packets first, the
source and/or upstream ISPs are incentivized to deploy
Lattice collaborators.

C. Limitations of Alternative Designs

One natural alternative to implementing the Lattice func-
tionality would be to use a high-speed L1 cache which maps
the flow to a label. That is, instead of sending the label to the
upstream collaborator, a Lattice-enabled classifier can simply

4

cache the mapping between the flow (identified by its five-
tuple in the header) and the label.

The advantage of this solution is that it does not need to
implement a signaling protocol or modify the packet header.
The disadvantage is that it requires the classifier to keep per-
flow state. This has a negative impact on scalability as the flow
mapping table will not fit in L1 or even in L2 caches. Indeed,
assuming 10-20 bytes per flow entry1, we need 1-2 MBs to
store the mapping table for 100K flows, and 10-20 MB to store
the mapping table for 1 million flows. This may lead to cache
misses to the main memory, which will considerably slow
down the classification operation. Furthermore, the classifier
becomes vulnerable to state exhaustion DoS attacks, in which
a malicious sender sends one-packet flows.

By contrast, our proposal requires no per-flow state. Since
the verification uses only the information in the labels and the
packet headers, it can be implemented by accessing only the
L1 cache at line-speed using existing hardware [20].

IV. FATE-CARRYING LABELS

A label in Lattice is an opaque sequence of bits that is
issued by a classifier. It can be meaningfully interpreted only
by its issuer. In its simplest form, a label can be a key in a
〈label→ action〉 lookup table. After receiving and verifying a
previously-issued label, a classifier looks up the corresponding
action to proceed. Even in this straightforward interpretation,
labels can improve performance with a small state requirement
for lookup tables.

In order to remove the state requirement, we propose Fate-
Carrying Labels (FCLs), where a label is the action itself,
rather than a key in a lookup table. For example, packets
from an already classified-as-high-priority flow might arrive
at a firewall with an FCL that says “High Priority.” Conse-
quently, classification with FCLs provides great performance
gain by eliminating per-packet lookups and per-flow states in
classifiers.

A. Requirements
An FCL is expected to satisfy the following requirements

for classification decision enforcement, incentives, trust, and
security purposes in a stateless manner.
• Authenticity: A classifier should be able to authenticate

a label it issued for a particular flow. The authentica-
tion procedure should also ensure that a label is non-
transferable to another flow and for single-use only –
even for the same collaborator.

• Integrity: Labels should be unforgeable, or at least they
should be very hard to forge or to randomly guess by
anyone other than the issuing classifier. Classifiers should
also be able to differentiate between malformed and
corrupt2 labels.

1In a layer-4 classifier, a flow is identified by source and destination IP
addresses (4 bytes each), source and port numbers (2 bytes each) and protocol
type (1 byte). In addition, for each flow we need a pointer to the corresponding
rule (e.g.2 bytes), which amounts for a total of 15 bytes per flow entry in the
mapping table. This amount can be significantly higher for a layer-7 classifier
or/and IPv6.

2We consider a label to be malformed or wrong if it is unsuccessfully
tampered with; otherwise, it is considered to be corrupt.

• Confidentiality: Only the issuing classifier should be
able to interpret the action corresponding to an FCL.
Collaborators should be restrained from determining the
intent of the assigned labels to avoid lack of cooperation
and deflect eavesdroppers.

• Performance: Classifiers should be able to process labels
in a stateless, fast, and efficient manner without intro-
ducing significant overheads in collaborators. This will
ensure that the collaborators are never better off using
existing mechanisms.

B. FCL Format

In its minimal form, an FCL consists of an opaque bit string
Action, representing the action the issuing classifier must
take upon receiving this FCL. In order to detect a corrupted
label and to assist in label invalidation, an FCL should also
contain a CheckSum and a TimeStamp.

Leaving such information in plaintext fails to satisfy FCL
security requirements that are critical for classifiers like
firewalls, whereas using asymmetric key algorithms hurts
performance and weakens adoption incentives. We propose
employing the following mechanisms to achieve performance
with an acceptable level of security.
• Hash-based authentication: An FCL should include the

plaintext Action and an HMAC (e.g., SHA-1) – on
Action and TimeStamp along with the 5-tuple of the
flow to bind it – keyed using a Secret known only to
the issuer. Upon receiving an FCL, a classifier can now
quickly authenticate its issuer and act upon it.

• Label obfuscation: Since, the HMAC authentication
mechanism requires Actions to appear in plaintext as
part of FCLs, classifiers should obfuscate Actions to
increase confidentiality and to facilitate integrity and
incentive requirements.

• Periodic label invalidation using leases: Using the same
Action for a particular action enables an observer
to learn 〈Action→ action〉 mappings over time. We
propose using multiple Actions for a particular action
for confidentiality and their periodic invalidation using
time-dependent leases to prevent reuse [27]. Periodic
invalidation also provides a natural way to throttle/deny
misbehaving collaborators.

Choosing the right tradeoff between performance and secu-
rity is usually a difficult decision. A trusted datacenter network
is likely to opt for performance benefits over costly security
mechanisms whereas a highly secure enterprise network may
value security over performance for monitoring ingress/egress
traffic. To this end, the Lattice framework provides pluggable
interfaces to support user-defined security mechanisms.

V. Lattice SIGNALING PROTOCOL

In this section, we describe the basic Lattice signaling
protocol in the context of TCP flows and discuss how Lat-
tice enables explicit coordination between different entities.
We briefly discuss a possible implementation of Lattice that
handles UDP-based connectionless flows in Section IX.

5

TABLE II
SUMMARY OF DIFFERENT TYPES OF INFORMATION CARRIED IN Lattice

MESSAGES

Type Related to...
Capability Capability declaration by a collaborator.
ClassReq Classification request from a classifier.
EchoReq Classification request echoed by an endpoint col-

laborator toward the intended collaborator.
InstallReq Echoed request reechoed by the opposite endpoint

collaborator. This can happen when the intended
collaborator is not an endpoint.

Results Label requested by a classifier.

A. Lattice Four-way Handshake Protocol

The Lattice signaling protocol involves a four-way hand-
shake – L SYN - L SYNACK - L ACK1 - L ACK2. Lattice
messages can carry different types of information inserted by
entities on the path between the two endpoints (Table II).

To illustrate the basic functionality of Lattice we show an
example in Figure 4, where end host A wishes to communicate
with end host B. The router E on the data path between A
and B classifies packets based on its QoS policy and assigns
them different forwarding priorities. E is thus the classifier and
uses the Lattice signaling protocol to configure collaborators
A and B. Here, Lattice provides benefits similar to DiffServ
and CSFQ [23]: router E does not have to perform expensive
packet classification on every packet, nor does it have to
maintain per-flow state.

When A initiates communication with B, it first sends a
L SYN to B. Collaborators on the A → B path advertise
their capabilities, and classifiers place classification requests
(ClassReqs) in the L SYN. The ClassReqs are echoed back to
A in the L SYNACK generated by B. Collaborators are notified
of the ClassReqs addressed to them through the L ACK1
subsequently sent by A. The collaborators embed the requested
labels in the L ACK1 and subsequent A → B data packets.
Similarly, L SYNACK and L ACK2 configure the collaborators
in the B → A direction.

Figure 4 illustrates the Lattice signaling messages ex-
changed between A and B, described in detail below:

Step 1: A sends a L SYN to B, advertising its ability to
identify packets in the same TCP flow and label them.

Step 2: E forwards the L SYN after appending a ClassReq
of the form [classifier, collaborator, classification type, ac-
tion]. Here, E is requesting A to label all packets in the same
TCPFlow with label q1 denoting the assigned QoS class.

Step 3: B responds to the L SYN with a L SYNACK that
advertises its own classification capabilities and echoes the
ClassReq from the L SYN.

Step 4: E forwards the L SYNACK after appending a
ClassReq for labeling packets with q2, the QoS class for the
B → A TCPFlow.

Step 5: A records the L SYNACK EchoReqs addressed to it
with the current TCP flow. It then sends a L ACK1 to B, which
includes the requested classification result (i.e., Label:q1) and
the ClassReq copied from the L SYNACK.

Step 6: E forwards the L ACK1 with forwarding priority
indicated by the embedded label q1.

End host A
Router E

Capability: [A,TCPFlow,Label]
L_SYN 1 2

Capability: [A,TCPFlow,Label]
L_SYN

ClassReq: [E, A, TCPFlow,Label:q1]

3
Capability: [B,TCPFlow,Label]
L_SYNACK

EchoReq: [E, A, TCPFlow,Label:q1]

4
Capability: [B,TCPFlow,Label]
L_SYNACK

EchoReq: [E, A, TCPFlow,Label:q1]
ClassReq: [E, B, TCPFlow,Label:q2]

5 L_ACK1

EchoReq: [E, B, TCPFlow,Label:q2]
Results: [E, TCPFlow,Label:q1]

6 L_ACK1

EchoReq: [E, B, TCPFlow,Label:q2]
Results: [E, TCPFlow,Label:q1]

D
at

a
P

la
ne

End host B

DATA
Results: [E, TCPFlow,Label:q1]

DATA
Results: [E, TCPFlow,Label:q2]

7 L_ACK2

Results: [E, TCPFlow,Label:q2]
8 L_ACK2

Results: [E, TCPFlow,Label:q2]

C
on

tro
l P

la
ne

Fig. 4. Lattice signaling in a QoS application using the four-way handshake
protocol.

Step 7: Like A, B records the L ACK1 EchoReq with the
current TCP flow, and responds with a L ACK2 that includes
the requested classification result Label:q2.

Step 8: E forwards L ACK2 with forwarding priority q2,
as in Step 6.

Signaling is complete once the L ACK2 reaches A. A
and B include the classification results of their respective
ClassReqs in every subsequent data packet they exchange. It is
assumed that an entity will never resend incoming information
addressed to itself.

During the handshaking process, collaborators agree upon
a session handle that uniquely identifies their shared states.

B. Supporting Asymmetric Paths

In Figure 4, L ACK2 is redundant; a three-way handshake
suffices. However, the possibility of asymmetric network paths
(possibly due to Internet path diversity [15] or load balancing
Direct Server Return mode [19]) necessitates the L ACK2
message and makes Lattice signaling four-way instead of
three-way. A non-end host collaborator reads the ClassReqs
addressed to it in the A → B direction from the InstallReqs
in a L ACK1, but not from the EchoReqs field of a L SYNACK,
as the L SYNACK may take a different network path that omits
the collaborator. Thus, we need the fourth signaling message
– L ACK2 – to inform collaborators about ClassReqs in the
B → A direction.

C. Explicit Coordination between Collaborators

We revisit the example in Figure 1 where the extra pro-
cessing and state demanded by classification imposes a high
overhead over normal operations. It also demonstrates how on-
path classifiers can explicitly coordinate and signal each other
to establish common state at different collaborators.

Suppose end host A wishes to communicate with FTP
server B located behind a firewall farm. Load balancers L1

6

and L2 distribute traffic across the different firewalls. For
correct firewall functionality, packets in forward and reverse
flow directions, as well as in both control and data flows
of an FTP session, must be processed by the same firewall.
In current mechanisms [19], L2 records the link on which a
packet arrived and uses the recorded information to choose the
outgoing link for a packet in the reverse direction. In addition,
L1 and L2 must be capable of reconstructing TCP streams
and parsing FTP headers in order to identify the control and
data connections of an FTP session. Thus, current firewall
load balancing solutions are complex both in terms of device
implementation as well as in configuration.

Lattice simplifies the configuration of firewall load balanc-
ing by facilitating explicit coordination between the two load
balancers, L1 and L2, in the load balancer pair. It reduces
load balancer implementation complexity by offloading the
complex operations required for FTP session identification
from the load balancers to the end hosts.

Using Lattice, L1 adds two ClassReqs to A’s L SYN – one
that directs end host A to label all packets in the FTPSess
with label F1 (denoting firewall instance F1) and another
that directs B to label all packets in the FTPSess with same
label F1 (to be used by L2). L2 uses the label to forward
the L SYNACK through the same firewall instance used in the
forward direction. The FTP application software at A and B
remember corresponding labels and include them in all data
and control connections in the same FTP session.

A Lattice-enabled firewall load balancer thus simply reads
the label in a packet’s Lattice header and forwards it to
the firewall instance denoted by that label. Such operational
simplicity makes it feasible to integrate firewall load balancing
functionality into routers and switches, avoiding the need for
expensive special-purpose firewall load balancers.

VI. DESIGN AND PERFORMANCE ISSUES

A. Security

We discuss Lattice’s resiliency against label spoofing, DoS
attacks, and malicious label modifications in the following.

1) Eavesdropping and Label Spoofing: A malicious at-
tacker can try reusing labels assigned to another collaborator.
If security-enabled FCLs are used, this attack is meaningful
only in a pathological scenario: the malicious entity can bypass
a classifier like firewall by spoofing the label and the 5-
tuple of the corresponding flow, if it can intercept the label
and is trying to communicate to the same endpoint as the
collaborator. Otherwise, classifiers can use the verifiability of
FCLs to detect tampering and drop such packets.

2) DoS Attacks: We consider two types of DoS attacks:
(a) attacks on classifiers, and (b) attacks on collaborators.
The fact that Lattice does not introduce any additional state
in classifiers makes them resilient to DoS or DDoS attacks.
The best an adversary can do is to send packets without
any labels, which might make a classifier fall back to per-
packet classification. However, this is semantically equivalent
to existing solutions, and if there are packets with labels a
Lattice-enabled classifier will prioritize them over non-labeled
ones anyway – thus preventing DoS attempts.

Lattice has small state requirements in collaborators. Collab-
orators can always refuse to honor any classification request. In
addition, a collaborator can use a threshold for the maximum
allowable Lattice-related resources.

3) Malicious Label Modification: An attacker can try to
maliciously change a label to adversely affect the outcome.
Since FCLs are verifiable, classifiers will be able to detect
such modifications and drop such packets.

B. Trust Model

Lattice does not require collaborators or classifiers to trust
each other. Collaborators can ignore classification requests
from any classifier. Verifiable FCLs ensure that classifiers take
action based only on the labels provided by them.

Unlike active networking [25], neither collaborators nor
classifiers execute code supplied by non-trusted entities. This
further lowers overall trust requirements. Lattice does not also
introduce any additional concerns in terms of security, privacy,
and trust between different administrative domains. As already
discussed, an FCL is meaningless to everyone else other than
the issuing classifier. Moreover, FCLs can be periodically
changed, and a classifier can introduce additional obfuscation
methods.

If a classifier selfishly overwrites or removes labels provided
by other classifiers, some or all of Lattice-enabled classifiers
might fail to observe the expected performance gains. Even
in such pathological cases, Lattice can fall back to per-packet
classification.

C. Scalability

Lattice is scalable with respect to both signaling overheads
and memory/state requirements in collaborators. Lattice sig-
naling is performed only at session start and when explicitly
initiated after path change or state loss. Moreover, it does
not introduce additional round-trips as it is piggybacked on
packets of existing connection oriented protocols.

Lattice requires per-session state only in collaborators. Such
state requirements do not restrict Lattice scalability as collab-
orators are typically not bottlenecked by memory. Moreover,
Lattice memory requirements are minimal.

Classifiers simply use classification results embedded by
collaborators. The decision of directly using actions obviates
any additional state requirements in classifiers. Lattice can
even reduce the state at classifiers. For example, a Lattice-
enabled load balancer need not maintain 〈flow → server〉
instance mappings; instead it can put that information in labels
to store in corresponding collaborators.

D. Signaling Robustness

Lattice signaling is robust to path changes, lost/retransmitted
messages, and unexpected state expirations in collaborators.

1) Path Changes: Path changes involving classifiers and
collaborators are detected by the absence of expected labels
and can be fixed by resignaling. The following example will
explain how Lattice handles path changes.

Figure 5(a) illustrates a web browser running on host A
sending HTTP requests to a web server located in a data center.

7

F’

C’

(b)

(c)

End
Host A

Core
Router C

Web
server W1

Edge
Router E

Load
Balancer L

Edge
Router F

(a)

Fig. 5. Different path change scenarios while a web browser in end host A
is connected to the web server W1.

Load balancer L spreads HTTP requests from end hosts across
the web servers in the data center. Similar to the HTTP cookie
mechanism, L leverages the semantic context available at A to
send all of its HTTP requests to the same web server W1. Edge
router E performs priority-based forwarding with help from
A and W1 (see Section V-A). Similar to MPLS, core router C
offloads IP route lookup to edge routers E and F to reduce
its processing and memory requirements. In this example, C
and L are classifiers; A, W1 and F are collaborators; E is
simultaneously a collaborator and a classifier.

In Figure 5(b), the network path between end host A and
web server W1 shifts from edge router F to F ′. In Figure 5(c),
the network path shifts from core router C to C ′. In the former
case, F ′ does not insert any classification results addressed to
C. In the latter case, classification results are addressed to C,
and not C ′. Thus, in both cases, the core router (C or C ′)
detects the absence of classification results addressed to it and
initiates resignaling.

On receiving a resignaling request, collaborators re-run the
Lattice four-way handshake. The session handle established
during original signaling is included in the Lattice headers.
The collaborators on the original path use the handle to
retrieve the previously established states and insert labels in
the resignaling messages. Classifiers append ClassReqs only
if they do not find the desired classification results addressed
to them. A classifier limits the rate at which it requests
resignaling to avoid resignaling infinitely when no appropriate
collaborators are present on the new path.

If a classifier’s collaborators are unaffected by the path
change, it operates normally without any performance hit.
However, some classifiers like load balancers may operate in-
correctly during resignaling. For example, if the path changes
to include a different load balancer L′, which does not
understand labels intended for L, packets may be forwarded
to the wrong web server. This is inevitable even in existing
load balancer deployments.

2) Unexpected State Expiration: Lattice handles unex-
pected state expiration at collaborators and classifiers by resig-
naling. Classification soft state established at one collaborator
is often independent of that at another (e.g., Section V-A),
but it is not always the case. For example in Section V-C,
end hosts A and B use the same label so that the firewall
load balancer pair can select the same firewall instance in

TABLE III
SLOC OF OUR PROTOTYPE IMPLEMENTATION

Component SLOC
lighttpd web server 19
httperf HTTP benchmark tool 7
wget command line HTTP client 10
nuttcp TCP throughput benchmark tool 13
Layer-4 firewall 308
Layer-4 load balancer 190
Lattice socket library & daemon 4025

both flow directions. If the state at B expires before A and A
sends a packet to B, B will not be able to include the correct
classification results in its response packet to A. Lattice at B
detects the absence of state identified by the session handle
in the packet and runs out-of-band Lattice signaling to re-
establish the missing state before replying to A.

3) Retransmitted Messages: Lattice signaling is resilient
to lost packets when piggybacked on TCP. However, special
care must be taken to handle retransmissions. Suppose, in
the example in Figure 5, load balancer L selects the web
server instance W1 on processing the L SYN from A. Now
imagine that A retransmits a L SYN (as part of the TCP SYN
retransmit) because the L SYNACK was delayed. If L does not
maintain per-flow state, it may assign a different web server
instance, say W2, to the second L SYN. To prevent confusion,
A accepts only the first L SYNACK. A’s TCP stack must also
be slightly modified to ensure that any TCP ACK containing
a L SYNACK different from the first one is rejected, as it
may have originated from a different web server instance. To
quickly release TCP state at the unused web server instance
(from the ignored response), A can send a TCP RST with the
appropriate classification label embedded in the Lattice header.

VII. IMPLEMENTATION

We prototyped Lattice using the Click [18] software router
and implemented a variety of classification services on top of
Lattice for evaluation purposes.

Lattice implementation in a collaborator consists of two
parts: a daemon and a network socket library. The daemon
implements the core Lattice functionality: control plane sig-
naling and data plane classification. Collaborator applications
interact with the daemon using the Lattice socket library. In our
prototype, the daemon is a userlevel Click router, with which
the socket library interacts over a local TCP connection. The
daemon uses the tun device to intercept outgoing and incoming
packets.

Lattice-enabling an existing collaborator application often
simply involves replacing BSD socket calls with their Lattice
equivalents. Table III lists the source line count (SLOC) for
the core Lattice implementation (C++) and added/modified
number of lines required to port existing applications.

A. Lattice API

Applications at end hosts interact with Lattice using the
Lattice network library. We suggest a socket library very
similar to the standard BSD socket library so that existing

8

network applications can easily be ported. However, Lattice is
not restricted to this particular API.

Our library consists of functions (e.g., l_connect and
l_bind) that have direct semantic correspondence with the
standard BSD socket library, and additional Lattice specific
functions. Examples include, l_session_create to cre-
ate different types of Lattice sessions (e.g., HTTP SESS,
TCP FLOW, FTP SESS) and l_add_capability to al-
low an application to advertise its classification capabilities.

The application sends and receives data using standard
send and recv socket calls. A Lattice processing module
in the OS performs the classification tasks configured during
Lattice signaling on the packets generated by send before
sending them on the wire. This module also strips Lattice
headers from received packets and updates session state before
passing them to the OS network stack.

B. Lattice in the Protocol Stack

To enable the Lattice signaling protocol between collabo-
rators and classifiers, we propose a classification layer that
logically spans from the link layer to the application layer.
For practical purposes, however, we prototyped Lattice as a
new layer between network and transport layers. Details of
the corresponding header is described in Appendix A.

We assume that the middleboxes that operate at layers 4
and above (e.g., firewalls, load balancers, intrusion detection
boxes) are Lattice aware, i.e., they either actively participate
or ignore Lattice-related content.

VIII. EVALUATION

This section uses measurements from the DETERlab testbed
to study the performance and scalability characteristics of
Lattice-enabled classifiers and to illustrate the robustness of
the Lattice signaling protocol. Our experiments reveal the
following findings:

• Lattice delivers a 2x increase in firewall throughput, and
with line-speed hashing, it can provide an additional 2x
to 3x gain.

• The performance improvement provided by Lattice in-
creases with the complexity of the classification task.

• Per-packet overhead at collaborators caused by Lattice is
less than 1µs. There is no computation or state overhead
in classifiers due to Lattice.

• In the presence of path changes or component failure,
Lattice can recover within 2 RTT.

A. Performance and Scalability

We quantitatively evaluate the performance and scalabil-
ity improvement of using Lattice for classification-dependent
services by considering two applications: firewall filtering
and load balancing. The firewall example further illustrates
how Lattice enables classification offloading in traditionally
centralized applications and improves performance.

 0

 50

 100

 150

 200

 0 500 1000 1500 2000 2500 3000 3500 4000

G
oo

dp
ut

 (M
bp

s)

Number of Rules

Regular-Snort
Lattice-Snort

Fig. 6. Throughput of a Lattice-enabled firewall remains steady with the
increasing number of rules from the Snort rule set.

 0

 50

 100

 150

 200

 0 500 1000 1500 2000 2500 3000 3500 4000
G

oo
dp

ut
 (M

bp
s)

Number of Rules

Regular-Random
Lattice-Random

Fig. 7. Lattice-enabled firewall exhibits steady throughput as the number of
RandomIP rules increases.

1) Firewall Filtering: The throughput of a regular firewall
decreases with increasing rule set size [29]. At large rule sizes,
Lattice-enabled firewall scalably maintains constant through-
put that is two to three times that of a regular firewall.

We used the Click [18] IPFilter module as the base of
our regular and Lattice-enabled firewalls. Firewall throughput
is measured as the aggregate goodput of simultaneous large
file transfers from lighttpd servers to wget clients.

Two different rule sets were used in the firewalls for
evaluation: (i) Snort: Port number matches were sampled
from the over 600 unique rule headers (i.e., involving just
packet 5-tuples) in the Snort IDS rule set [7], [30]. Due to lack
of IP diversity in the Snort rule set, source and destination IP
matches were randomly drawn from a pool of 250 prefixes.
(ii) RandomIP: Source and destination IP matches were
drawn from a random pool of 100 prefixes. Rules ignored port
numbers. For each rule set, we ensured that the rule matching
our file transfer traffic was the last. This enabled us to measure
worst case performance, independent of the traffic mix.

Figure 6 and Figure 7 show the throughput drops of the
regular firewall as rule set size increases from 100 to 4000 for
Snort and 100 to 4000 for RandomIP rule sets (error bars
represent minimum and maximum values). For the Snort
set, throughput of the regular firewall drops more than 80% –
≈170.6Mbps to ≈30.56Mbps. For the RandomIP set, it drops
around 70% – ≈166.4Mbps to ≈51.2Mbps. Lattice-enabled
firewalls maintain roughly constant throughputs of ≈86.2Mbps
and ≈99.2Mbps for the Snort set and for the RandomIP

9

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

N
um

be
r o

f C
on

ne
ct

io
ns

 G
ra

nt
ed

/ S
ec

on
d

Number of Connections Initiated/ Second

Regular
Lattice

Fig. 8. Average connection acceptance ratio of a Lattice-enabled load
balancer increases linearly with connection attempts.

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

H
an

dl
in

g
Ti

m
e

pe
r C

on
ne

ct
io

n
(in

 m
s)

Number of Connections Initiated/ Second

Regular
Lattice

Fig. 9. Load balancer average connection handling time.

set, respectively.
A Lattice-enabled firewall thus outperforms a regular fire-

wall when the rule set size is above an attractiveness threshold.
More importantly, it sustains a constant throughput even as the
rule set size increases, thus demonstrating good scalability. In
our experiments, the attractiveness threshold is around 600 and
500 for Snort and RandomIP rule sets, respectively. Many
firewall deployments already have rule sets that are larger than
our thresholds. A 2004 study [26] found that firewalls have
up to 2671 rules. The biggest classifier in [14] had 1733
rules, while the biggest edge router ACL set in [22] had 4740
rules. We expect rule set size to continue to grow as size
and complexity of networks increase. Thus, attractiveness of
a Lattice-enabled firewall is most likely to increase over time.

2) Load Balancing: The performance gain using a Lattice-
enabled load balancer over a regular load balancer is not as
prominent as in the case of firewalls. This stems from the
fact that packet classification in firewalls is inherently more
complex, and thus Lattice gains more benefits by offloading
work to clients. For preliminary evaluation, we developed a
simple round-robin LB module in Click as the base of our
regular and Lattice-enabled load balancers. Load balancer per-
formance was measured in terms of the connection acceptance
ratio at the load balancer and the average connection handling
time by using httperf benchmarking tool in clients and
lighttpd servers. We vary connection initiation rates from
500 connections/second to 5000 connections/second.

As evident from Figure 8 and Figure 9, the Lattice-enabled

 0

 50

 100

 150

 200

 250

 300

None 1 2 3 4

G
oo

dp
ut

 (M
bp

s)

Number of Firewalls

Lattice
Regular

Lattice w/o HMAC

Fig. 10. Classification performance with multiple firewalls (each with 7500
rules) in series.

layer-4 load balancer prototype attains a higher acceptance
ratio and a lower handling time per connection than its regular
counterpart under increasing load. At the highest load in
these experiments (5000 connections/second) the regular load
balancer can handle around 18% fewer connections while
taking around 18% more time per connection.

3) Cost of Hashing: The hash computation step of per-
packet FCL authentication is the most expensive task in
Lattice processing. By completely eliminating it in trusted
domains (e.g., data center and enterprise networks) or by
using specialized hardware for line-speed hashing, Lattice can
achieve significant performance improvement.

The gap between the lines representing Lattice with and
without hashing in Figure 10 represent the cost of hashing
in our software implementation. Lattice without any authen-
tication requirements can improve classifier throughput by
2-3 times. Similar gain can also be achieved using line-
speed hardware hashing by eliminating software overhead for
hashing. The reason behind the slopes in the figure is explained
in the next section.

B. Overheads

Lattice introduces minimal overheads in collaborators and
classifiers, and per-packet overhead to store Lattice headers is
offset by the overall performance gain.

Implementation overheads. Our throughput experiments
indicate that packet capture using the tun device is a signif-
icant overhead in our userlevel prototype implementation. In
the absence of packet capture or Lattice processing, nuttcp
measured a TCP throughput of 941 Mbps between two PCs
A and B. Throughput drastically dropped to 635 Mbps when
the experiment was conducted using packet capture, without
any Lattice processing. This throughput drop is solely an
artifact of our userlevel software prototype implementation and
not an inherent limitation of the Lattice. Addition of Lattice
processing decreased throughput to 536 Mbps, an overhead of
only 16% over the baseline 635 Mbps.

We believe that a kernel implementation of Lattice will
avoid the packet capture overhead. Furthermore, by pre-
allocating extra per-packet buffer space for Lattice headers,
expensive packet copies that currently slow down our userlevel
Lattice implementation can be avoided.

10

! "#$!%& "#'(&)$*%
+ "#(&& *#)!)%%%)
*$ *#&+ %#!)+(!!$
)% %#+) !#$)")+(%
$! &#)) (#"*)%'+!

*%+ *"#)) *'#''("&'

0
5

10
15
20

4 8 16 32 64 128 Ti
m

e
(m

ill
is

ec
on

ds
)

File Size (KB)

Lattice
Regular

Fig. 11. Comparison of transfer times for small files through a 2700 rule
firewall.

Collaborator overheads. Lattice introduces small process-
ing overhead at collaborators – under 1µs per packet on
average in our prototype implementation. For every Lattice
session, space overhead in a collaborator is similar to the per-
packet overhead.

Classifier overheads. Lattice introduces no additional state
at classifiers and obviates per-packet classification. Still we
observed some drop in goodput as the number of on-path
Lattice-enabled classifiers increase (Figure 10).

As the number of classifiers increase, so does the number
of labels. In our implementation, each classifier has to iterate
through all the labels to find the ones addressed to itself, and
more labels only lengthens this process. We believe that a
hardware implementation with support for parallel matching
will eliminate this software artifact.

Signaling overheads. The four-way handshake used in
Lattice can be disadvantageous to short flows because the
overhead of setting up FCLs can offset the performance gain.
In order to quantify this overhead, we conducted an experiment
which involved transferring very small files from one host
to another through a firewall. Figure 11 demonstrates that a
Lattice-enabled classifier is at least as good as a regular one,
and its gain rapidly increases with the flow size.

C. Signaling Robustness and Simplified Configuration

We have explained the simplicity of configuration using
Lattice and the robustness of Lattice signaling protocol in
Section V. We empirically evaluate these aspects of Lattice
using a scenario (Figure 12) that requires a mid-flow reestab-
lishment of labels due to classifier failure, as well as explicit
coordination between classifiers and collaborators.

Consider two processes (1 and 2) at end host A in Figure 1
that retrieves two large files from FTP server B (using flows 1
and 2). Initially, flow 1 traverses the network in both directions
through firewall F , as does flow 2 through firewall G (guided
by the load balancers L and M). After 20 seconds, firewall
G becomes unavailable and load balancer L diverts all traffic
through firewall G to firewall F . Firewall F identifies missing
labels and requests that end host A put new labels in flow 2’s
packets. Process 2 takes only 2 RTT to complete the handshake
and keeps retrieving the file with virtually unaffected goodput.
Note that there is some drop, but it is well within the variability
of the connection. After 10 more seconds, firewall G comes
back online, and load balancer L restores flow 2 to its original
path.

Throughout the failure and recovery process, load balancers

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40

G
oo

dp
ut

 (M
bp

s)

Time (s)

Firewall F
Firewall G

Flow 1
Flow 2

Fig. 12. Lattice performance under failure and subsequent recovery of a
classifier.

L and M twice coordinate regarding the backward path for
flow 2, without any explicit configuration.

IX. DISCUSSION/LIMITATIONS

A. Deployment Issues

To take advantage of Lattice, both endpoints of a con-
nection must be Lattice-aware. Consequently, a data center
or an enterprise network is a more suitable candidate for
Lattice deployment than the Internet. The single administrative
domain enables easier modification to end hosts. Moreover,
new data centers being built today offer hope for a clean-slate
Lattice implementation. A proxy at the data center’s ingress
link can cleanly separate the data center network from the
Internet and add appropriate Lattice headers. Implementing
such a proxy that can scale to data center workloads is an
open challenge. This approach confines Lattice functionality
and benefits within the data center.

An end-to-end Lattice deployment does not call for a
complete overhaul of the entire network; Lattice traffic can co-
exist with non-Lattice traffic. One way to address this problem
is to introduce Lattice-enabled split proxies in edge networks
instead of changing the network protocol stacks in all the end
hosts. In this case, the proxy will take care of Lattice-headers
by adding and removing them on outgoing and incoming paths
respectively. Such a proxy can be inserted into a network as
any other middlebox.

B. Legacy Applications

Lattice deployability also depends on its support for legacy
classification applications. Even though Lattice requires mod-
ifications to collaborators and classifiers, its similarity to BSD
socket libraries and small code modification requirements
(Section VII) demonstrate that existing applications can easily
be ported to the Lattice framework. Lattice daemon functional-
ity can be embedded in future OS versions or can be installed
as a standalone system service.

C. Supporting Connectionless Protocols

Even though we have described and evaluated Lattice by
piggybacking its handshaking messages on TCP, Lattice can

11

also be implemented on top of UDP-like connectionless pro-
tocols by introducing some modifications to Lattice semantics.
In this case, the four-way handshaking protocol becomes su-
perfluous. Instead of piggybacking, classifiers need to generate
additional packets to propagate ClassReqs back to the corre-
sponding collaborators whenever they see L SYN messages
with collaborator capabilities. EchoReqs and InstallReqs also
become unnecessary.

X. RELATED WORK

Classification across the protocol stack. In MPLS [5],
Label Switch Routers offload expensive route lookup oper-
ations to Label Edge Routers. Lattice supports classification
across layers 2 to 7 and uses an in-band signaling protocol not
restricted to adjacent nodes.

End hosts or first hop routers in Diffserv [1] classify packets
and record the desired QoS in the IP header’s DS field. In
CSFQ [23], edge routers label packets of a flow based on its
flow rate. The 20-bit flow-id IPv6 header field [3] provides a
mechanism for end-hosts to uniquely identify a flow with any
desired semantics. Core routers can provide differential QoS
to packets based on their DS fields, labels, or flow-ids without
performing expensive reclassification. However, unlike Lattice,
this scheme supports only one application at a time and does
not provide any signaling mechanism to inform/configure the
entities that use the flow-id field.

Although originally designed for offloading web-server state
to end hosts, HTTP cookies are widely overloaded as a
means to identify multiple TCP flows in an HTTP session.
Unlike HTTP cookies and the OSI session layer, Lattice is
not restricted to the application layer – it works across layers
2 to 7. In addition, Lattice makes the session id available to a
load balancer in an easily readable packet header location, as
opposed to performing deep packet inspection or application
header parsing to read an HTTP cookie.

Software defined and active networks. OpenFlow [6]
offloads packet classification to a logically centralized con-
troller. Based on the initial packets of a flow, the controller
classifies packets and installs flow table entries at switches on
the flow’s network path. Lattice’s distributed approach avoids
a classification choke point and a centralized point of failure.
Lattice trades off per-packet overhead in middleboxes with
state overhead in end hosts at flow startup.

Unlike active networking [25], Lattice carries non-
executable opaque strings whose semantics depend on the
classification application to which they are directed. This more
restrictive nature of the Lattice avoids the security risks of
executing untrusted code, while still enabling end hosts to
influence the fate of their packets within the network.

Classification offloading. Some prior work (e.g., distributed
firewalls [10], network exception handlers [16]) adopted an
extreme approach of moving the entire application requiring
packet classification to end hosts. We target the more con-
ventional and widely deployed scenario where an in-network
entity (e.g., a router or a middlebox) is involved (often in a
critical role) in implementing the functionality that requires
packet classification. Lattice can be used to communicate the
results of network exception handlers to on-path entities.

Signaling protocols. Lattice signaling is inspired by
ECN [8], MIDCOM [4], RSVP [9], TVA [28], and HTTP
Cookies. Stateful Distributed Interposition (SDI) [21] and
Causeway [11] provide mechanisms to automatically prop-
agate and share contextual information and metadata across
tiers of a multi-tier system or within different layers in an OS.
Such OS-level support obviates the need to modify end hosts
to maintain session information and to embed Lattice headers.

Header annotation. Lattice headers are similar to X-
trace [13] annotations in that their semantics and purpose
can span multiple protocol layers. X-trace annotations contain
meta-data for reconstructing an application request’s path to
aid network diagnostics. In contrast, Lattice headers carry
signaling messages and classification results with varying
semantics embedded by different collaborators.

COPS [17] proposes iBoxes that classify a packet using
deep packet inspection and then summarize the results in
an annotation layer within the packet. A packet’s annotation
layer influences the forwarding decision (forward, drop, rate
limit) at subsequent iBoxes and doubles up as an in-band
management plane. Lattice simultaneously supports a variety
of classification applications in addition to security.

Security frameworks. SIFF [27] and Visa [12] use mech-
anisms similar to Lattice to mitigate DDoS flooding attacks
and to enable secure inter-organizational communications,
respectively. SIFF requires capability establishment in all the
routers on a path for privileged traffic using a handshake
protocol. In Lattice, only the interested network elements need
to add labels. Visa protocols use Access Control Servers in
each domain to establish a visa for each flow that is stamped
on each packet using strong cryptographic methods. Lattice
does not require any external server. It aims for performance
and can provide strong security with very high probability.

XI. CONCLUSIONS

We presented Lattice, a framework that offloads classifier
workload onto end hosts with the help of a signaling protocol
and verifiable FCLs. Lattice incentivizes collaborators by
providing a faster path for correctly labeled packets. Lattice-
enabled classifiers can perform 2× faster than their unmodified
counterparts, and an additional 2 − 3× gain is achievable
using line-speed hashing. Moreover, Lattice scales well with
the increasing number of classification rules. While achieving
performance, scalability and security, Lattice-enabled classi-
fiers remain backward compatible and semantically equivalent
to their unmodified counterparts. Our experience suggests that
Lattice enables support for future classification applications
without introducing additional point solutions.

REFERENCES

[1] An Architecture for Differentiated Services. RFC 2475.
[2] F5 Application Delivery Controller Performance Report, 2007. http:

//www.f5.com/pdf/reports/f5-performance-report.pdf.
[3] IPv6 Flow Label Specification. RFC 3697.
[4] Middlebox Communication Architecture and Framework. RFC 3303.
[5] Multiprotocol Label Switching Architecture. RFC 3031.
[6] OpenFlow. http://www.openflowswitch.org.
[7] Snort. http://www.snort.org.
[8] The Addition of Explicit Congestion Notification (ECN) to IP. RFC

3168.

12

[9] The Use of RSVP with IETF Integrated Services. RFC 2210.
[10] S. M. Bellovin. Distributed firewalls. ;login:, 24(Security), November

1999.
[11] A. Chanda, K. Elmeleegy, A. L. Cox, and W. Zwaenepoel. Causeway:

operating system support for controlling and analyzing the execution of
distributed programs. In HOTOS, 2005.

[12] D. Estrin, J. C. Mogul, G. Tsudik, and K. Anand. Visa Protocols for
Controlling Inter-Organizational Datagram Flow. Technical Report WRL
Research Report 88/5, Western Research Laboratory, Palo Alto, CA, Dec
1988.

[13] R. Fonseca, G. Porter, R. Katz, S. Shenker, and I. Stoica. X-Trace: A
Pervasive Network Tracing Framework. In USENIX NSDI, 2007.

[14] P. Gupta and N. McKeown. Packet Classification on Multiple Fields. In
SIGCOMM, 1999.

[15] Y. He, M. Faloutsos, S. Krishnamurthy, and B. Huffaker. On routing
asymmetry in the Internet. In GLOBECOM 2005.

[16] T. Karagiannis, R. Mortier, and A. Rowstron. Network Exception
Handlers: Host-network Control in Enterprise Networks. In ACM
SIGCOMM, 2005.

[17] R. H. Katz, G. Porter, S. Shenker, I. Stoica, and M. Tsai. COPS: Quality
of Service vs. Any Service at All. In IWQoS, 2005.

[18] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek.
The Click modular router. ACM Transactions on Computer Systems,
18(3):263–297, Aug 2000.

[19] C. Kopparapu. Load Balancing Servers, Firewalls, and Caches. Wiley,
2002.

[20] M. Kounavis, X. Kang, K. Grewal, M. Eszenyi, S. Gueron, and
D. Durham. Encrypting the internet. In SIGCOMM, 2010.

[21] J. Reumann and K. G. Shin. Stateful distributed interposition. ACM
Transactions on Computer Systems, 22(1), 2004.

[22] S. Singh, F. Baboescu, G. Varghese, and J. Wang. Packet Classification
Using Multidimensional Cutting. In SIGCOMM, 2003.

[23] I. Stoica, S. Shenker, and H. Zhang. Core-stateless fair queueing: a
scalable architecture to approximate fair bandwidth allocations in high-
speed networks. IEEE/ACM Transactions on Networking, 11(1), 2003.

[24] D. E. Taylor. Survey and taxonomy of packet classification techniques.
ACM Computing Surveys, 37(3):238–275, 2005.

[25] D. Tennenhouse, J. Smith, W. Sincoskie, D. Wetherall, and G. Minden. A
Survey of Active Network Research. IEEE Communications Magazine,
35(1), Jan 1997.

[26] A. Wool. A Quantitative Study of Firewall Configuration Errors.
Computer, 37(6), 2004.

[27] A. Yaar, A. Perrig, and D. Song. SIFF: A stateless Internet flow filter
to mitigate DDoS flooding attacks. In In IEEE Symposium on Security
and Privacy, pages 130–143, 2004.

[28] X. Yang, D. Wetherall, and T. Anderson. A DoS-limiting network
architecture. In ACM SIGCOMM, 2005.

[29] M. K. Yoon, S. Chen, and Z. Zhang. Reducing the size of rule set in a
firewall. In IEEE ICC, 2007.

[30] F. Yu, T. V. Lakshman, M. A. Motoyama, and R. H. Katz. SSA: a power
and memory efficient scheme to multi-match packet classification. In
ANCS, 2005.

APPENDIX

A. Header

Our proposal is not wedded to any particular header format.
Ideally, the Lattice header has a free-form, flexible length, and
key-value format. But any format that provides the required
forwarding performance at the relevant network entities can
be used.

Figure 13(a) shows a rigid header format optimized for
forwarding performance of entities like routers, which work
faster on simple header formats. The 4-bit field N specifies
the number of information pieces (0 to 15) that follow. Recall
that there can be five types of information (Table II), four are
exclusively for handshake and one for carrying actual labels.
The 3-bit MSG field refers to one of the four handshaking
messages or DATA otherwise. The 1-bit RESIG field is set only

Application Layer

Transport Layer

Lattice

Network Layer

4 Bits 32 Bits

HANDLE

INFO 0

!

INFO (N – 1)

N MSG

8 Bits
ReSig

ACTION LEN

4 Bits 32 Bits

ID

HMAC (5-tuple, ACTION, SECRET)

CHECKSUM

16 Bits

TYPE

(a)

(b)

Fig. 13. (a) A rigid Lattice header format and Lattice location in the network
protocol stack; (b) An example Fate-Carrying Label.

during the resignaling phase (see Appendix VI-D). The 24-
bit HANDLE uniquely identifies the Lattice session associated
with the results.

The HANDLE is a concatenation of bits randomly proposed
by the two end hosts in the L SYN and L SYNACK messages.
All Lattice-related state at collaborators and classifiers is keyed
by this handle.

Each INFO consists of: (i) a 4-bit TYPE field denoting
the type of information; (ii) a 28-bit ID field specifying the
entity to which this information piece is addressed; (iii) a 4-bit
LEN field specifying the length of the total INFO in multiples
of 4 bytes; (iv) a 12-bit CHECKSUM field containing the
checksum of the complete INFO; The rest are dependent on the
collaborator or classifier that issued this INFO. Figure 13(b)
represents an FCL which consists of an 16-bit ACTION field
followed by an HMAC of all the information that must
verifiable at the classifier.

Each INFO must be explicitly addressed, since there are
often multiple classifiers and collaborators on a packet’s path.
Otherwise, if multiple classifiers request similar classification
support, confusion will ensue. These IDs need not be globally
routable. They only need to be unique on the path of a
particular data flow. We use existing identifiers (in this case,
parts of IP addresses) to identify collaborators and classifiers.

