
iOLAP: Managing Uncertainty
for Efficient Incremental OLAP

Kai Zeng
Cloud and Information
Services Lab, Microsoft

kaizeng@microsoft.com

Sameer Agarwal
Databricks Inc.

sameer@databricks.com

Ion Stoica
University of California,

Berkeley
istoica@cs.berkeley.edu

ABSTRACT
�e size of data and the complexity of analytics continue to grow

along with the need for timely and cost-e�ective analysis. How-

ever, the growth of computation power cannot keep up with the

growth of data. �is calls for a paradigm shi� from traditional batch

OLAP processing model to an incremental OLAP processing model.
In this paper, we propose iOLAP, an incremental OLAP query en-

gine that provides a smooth trade-o� between query accuracy and

latency, and ful�lls a full spectrum of user requirements from ap-

proximate but timely query execution to amore traditional accurate

query execution. iOLAP enables interactive incremental query pro-

cessing using a novel mini-batch execution model—given an OLAP

query, iOLAP �rst randomly partitions the input dataset into smaller

sets (mini-batches) and then incrementally processes through these

mini-batches by executing a delta update query on each mini-batch,
where each subsequent delta update query computes an update

based on the output of the previous one. �e key idea behind iO-

LAP is a novel delta update algorithm that models delta processing

as an uncertainty propagation problem, and minimizes the recom-

putation during each subsequent delta update by minimizing the

uncertainties in the partial (including intermediate) query results.

We implement iOLAP on top of Apache Spark and have success-

fully demonstrated it at scale on over 100 machines. Extensive ex-

periments on a multitude of queries and datasets demonstrate that

iOLAP can deliver approximate query answers for complex OLAP

queries orders of magnitude faster than traditional OLAP engines,

while continuously delivering updates every few seconds.

1. INTRODUCTION
Over the last few years, there has been a signi�cant increase in the

amount of data that is being collected and analyzed every day to sup-

port various data-driven decisions. Amajor challenge in processing

these massive amounts of data comes from the fact that the under-

lying hardwares cannot get fast or cheap quickly enough to keep up

with the data growth
1
, which in turn means that cost of decision

making will keep increasing. As OLAP queries usually touch a sig-

1
According to one recent report [3], data is expected to grow by
64% every year.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD ’16, June 26–July 1, 2016, San Francisco, CA, USA.
© 2016 ACM. ISBN 978-1-4503-3531-7/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2882903.2915240

ni�cant amount of data, this mismatch between data growth and

computation power shows clearly that the batch processing model

used by traditional OLAP processing is no longer suitable for many

OLAP applications.

Furthermore, data-driven applications pose a wide variety of re-

quirements on query latency and accuracy—on one hand, business-

critical analysis usually requires perfect accuracy, while on the

other, time-critical analysis (such as system diagnosis/log process-

ing) value timeliness of query results over perfect accuracy. More

recently there is an increasing need for interactive human-driven

exploratory analysis, whose desired accuracy or the time-criticality

cannot be known a priori and change dynamically based onunquan-
ti�able human factors (such as insights gained during the analysis).

However, existing OLAP engines either always deliver a perfectly

accurate result which may incur long query latency, or intentionally

trade o� accuracy for latency by only delivering approximate an-

swers on samples of data [7, 9, 12, 17, 34]. No existing OLAP engine

can provide a single system that can ful�ll the variety of require-

ments by giving a smooth trade-o� between accuracy and latency.

In this paper, we propose a new system—iOLAP (for incremen-
tal OLAP)—to tackle this performance mismatch, by replacing the
traditional batch processing model with a more interactive incre-
mental query processing model. �e core idea behind iOLAP is fairly
intuitive—given anOLAP query, the system presents the user an ap-
proximate result with an associated error estimate (e.g., con�dence
intervals), as soon as it has processed a small portion of the whole

dataset. At the same time, the system keeps crunching a larger and

larger fraction of the whole dataset, re�ning the approximate query

results and updating the user. �is process continues until either the

user is satis�ed with the accuracy of the query results and stops the

query, or the systemhas processed all the data (inwhich case it deliv-

ers accurate query results just as a traditional DBMS).�is approach

gives the user a smooth control over query execution and the �exi-

bility tomake the accuracy-latency trade-o� on the �y, and provides

a uni�ed system that covers the whole spectrum, from approximate

but timely query answers to perfectly accurate query answers with

a larger latency. As an example, compared to a traditional OLAP

engine, iOLAP can deliver an approximate answer with a 95% accu-

racy 15× faster, an answer with a 98% accuracy 7× faster, and a per-

fectly accurate answer by executing the query on the entire dataset

at a comparable performance (see Section 8). Last but not least, this

approach simpli�es the design of existing sampling-based approxi-

mate query processing (S-AQP) systems [7, 9, 12, 17, 34] by removing

the requirements of pre-generating and maintaining samples.

A limited form of incremental query processing for simple SPJA
2

queries was proposed inOnlineAggregation (OLA) [26]. More gen-

2
SPJA queries are those that consist of any combinations of select,
project and join operators followed by an aggregation operator.

http://dx.doi.org/10.1145/2882903.2915240

erally, incremental query processing has also been extensively stud-

ied in the context of delta view maintenance [18, 25, 25, 31, 10]. An

underlying limitation of these existing techniques is that they can-

not e�ciently support anything beyond simple (in most cases, �at

SPJA) queries. �is implies that for complex queries, such as those

with nested comparison subqueries, none of these techniques can

incrementally process the query e�ciently. In a separate context,

incremental processing has also been studied in the context of data

stream systems. �ese systems either rely on manually program-

ming the delta update logic [6, 22, 30, 35] (something that’s nontriv-

ial and error-prone for complex OLAP queries) or use progressive

models [28, 15, 16] for query processing. While these models are

very powerful for modeling delta updates, they o�en cause a lot of

recomputation for complex queries, and hence share the same set

of performance bottlenecks as other incremental view maintenance

techniques.

As an example, consider a simpli�ed Sessions log, storing

the web sessions of users accessing a video-sharing website, with

three columns: session_id, buffer_time, play_time. �e

“Slow Bu�ering Impact” (SBI) query (Example 1) can be used to

�nd out how a longer (than average) bu�ering time impacts user

retention on the website. While SBI is a fairly straightforward

nested aggregate query, it is very costly to incrementally process

it. �is is because as the query executes on larger and larger por-

tions of the Sessions table, any re�nement of the inner aggregate

AVG(buffer_time) could result in recomputing the whole outer

query on all previously-processed data from Session.

Example 1 (SBI: Slow Buffering Impact).
SELECT AVG(play_time)
FROM Sessions
WHERE buffer_time > (SELECT AVG(buffer_time)

FROM Sessions)

In this paper we propose iOLAP, a framework that addresses

these set of challenges around performance and generality with a

novel incremental query processing technique based on uncertainty

propagation. iOLAP signi�cantly generalizes incremental query

processing to complex queries with arbitrary nested subqueries,

user-de�ned functions (UDFs) and user-de�ned aggregate func-

tions (UDAFs). iOLAP has been demonstrated [38] to scale to more

than a 100 machines while crunching terabytes of data in parallel.

�is paper focuses on the theory and implementation details be-

hind the system. iOLAP uses a novelmini-batch executionmodel for
incremental query processing: Given an OLAP query, iOLAP auto-

matically rewrites the query into an enhanced delta query, randomly

partitions the dataset into smaller batches, and processes through

them by repeatedly executing the enhanced delta query on each

mini-batch of data one at a time. Each delta query in the sequence

computes a fast delta update of the previous query.

�e key idea behind iOLAP is a new delta update algorithm

based on uncertainty propagation. In particular, we propose a
novel perspective on the incremental processing problem by treat-

ing the changes that could happen in partial results of any opera-

tor during incremental processing—either tuple attributes or tuple

multiplicities—as uncertainties. Note that these uncertainties need
to be recomputed during delta updates. �erefore, the problem of

e�cient delta updates boils down to precisely �guring out uncer-

tainties that would change from those that would not change at a
very �ne-grained level. Based on this, iOLAP focuses on minimiz-

ing the recomputation on uncertainties that would change.

Speci�cally, we introduce a formal uncertainty propagation the-

ory that categorizes uncertainties into attribute uncertainty (chang-

ing attribute) and tuple uncertainty (changing multiplicity), anno-

tate these uncertainties for each tuple, and track their propagation

through a relational query plan. For tuple uncertainties, we quan-
tify how likely each tuple uncertainty would change, and prune

those that would not change. For instance, in Example 1, a�er ex-

ecuting the query on a certain portion of data, if we were to know

thatAVG(buffer_time) falls within the range [21.1, 53.9], we know

that with a very high probability, buffer_time = 58 will be al-

ways greater than the average, and can be selected in the inner �lter.

For attribute uncertainty, we carry lineage information for each
uncertain attribute (i.e., the values used to compute the attribute)

within the tuple itself, and compute the up-to-date values of the un-

certain attributes in place by only referencing the carried lineage.

�is avoids generating tuples from scratch during recomputation,

and thus maximizes the re-use of previous computation.

In summary this paper claims to make the following contribu-

tions:

● We present an uncertainty analysis framework for partial re-

sults produced in incremental query processing that provides

a dichotomy of the uncertainties in partial results, and reveals

how relational operators propagate uncertainties through a

query plan. (Section 4)

● Based on the uncertainty propagation theory, we developed a

novel delta update algorithm that estimates uncertainties and

minimizes delta update recomputation at a tuple/attribute

granularity using the lineage-based lazy evaluation.

● We implemented iOLAP using a mini-batch execution model

that can be easily integrated with existing database engines,

and �t well with distributed computing environment. We also

conducted an extensive performance study of iOLAP.

In the rest of the paper, we �rstly de�ne the query model and se-

mantics of iOLAP in Section 2. We then demonstrate the limitation

of existing delta processing techniques in Section 3. In Section 4, we

propose a novel uncertainty propagation theory to model the delta

processing problem, develop a delta update algorithmbased on that,

and discuss the ideas for optimizing tuple uncertainty and attribute

uncertainty. Wedetail the tuple uncertainty optimization and the at-

tribute uncertainty optimization in Section 5 and 6 respectively. We

cover the implementation details of iOLAP in Section 7, and evalu-

ate the performance in Section 8.

2. QUERY MODEL
When the user submits a query Q on a dataset D, iOLAP ran-
domly partitions D into p batches ∆D1 ,⋯, ∆Dp . It then iteratively

crunches through these partitions by processing a single batch as in-

put at a time, i.e., at the i-th (1 ≤ i ≤ p) batch, it processes ∆D i and

delivers to the user a partial query result. As these partial results are

computed on samples and thus are approximations of the true query

result that is computed on the whole dataset, iOLAP also presents an

error estimate (e.g., a con�dence interval) associated with the par-

tial results. As more and more data is processed, the partial result

gets re�ned periodically with better and better accuracy. Similar to

the POSTGRES-OLA implementation [26], the users can stop the ex-

ecution at any time when the result meets their desired accuracy

criterion.

In order to provide statistically meaningful approximate answers

to queries, iOLAP assumes that each batch of data contains a ran-

dom subset of the entire dataset. By default, iOLAP supports block-

wise randomness by randomly partitioning data blocks into batches.

�is works well when the attributes needed in the query are not cor-

related with the blocks. However, if this assumption does not hold,

iOLAP also provides data pre-processing tools to randomly shu�e

the entire input dataset. Furthermore, iOLAP also gives precise con-

trol to users in specifyingwhich input relations need to be processed

in an online fashion. For example, if the SBI query were to con-

tain more than one input relations, the user could explicitly specify

to stream through a large fact table like Sessions while reading
smaller dimension tables in entirety.

Query Semantics. In this paper, we use the relational algebra with
bag semantics, but generalize it to tuple multiplicities that are real

numbers (see Appendix A for a formal de�nition). Semantically,

given a queryQ, the partial query result given by iOLAP at batch i is
equivalent to computing Q on all the data seen in the �rst i batches
(and scaled appropriately). In other words, let us denote the data

processed up to batch i by D i = ⋃
i
j=1 ∆D j , the partial query result

delivered in batch i is equivalent to computing Q on D i where each

tuple is annotated with a multiplicity of m i = ∣D∣/∣D i ∣. �is means

that seeing a tuple in D i is roughly equivalent to seeing it m i times

in D. We denote this partial query result by Q(D i ,m i). Clearly,

Q(D i ,m i) is an approximation to the true query result Q(D). For

the sake of simplicity, we useQ(D i) andQ(D i ,m i) interchangeably

throughout the paper.

Error Estimation. Since Q(D i ,m i) is an approximation to the true

query result Q(D), iOLAP also associates an error estimation with

the partial answer. In our implementation, we use bootstrap [21]
to estimate the error of Q(D i) with respect to Q(D). Bootstrap is

a simple Monte-Carlo procedure that repeatedly carries out a sub-

routine called a trial. Each trial generates a simulated database, say
D̂ i , j , which is of the same size as D i (by sampling ∣D i ∣ tuples i.i.d.

from D i with replacement), and then computes query Q on D̂ i , j .

�e collection of the query results {Q(D̂ i , j)} obtained from all the

bootstrap trials form an empirical distribution, based on which an

error measure can be computed. Bootstrap can be e�ciently piggy-

backed with the normal query execution [8, 39].

3. OVERVIEW
To achieve low latency in each batch, the guiding design princi-

ple behind iOLAP is to take full advantage of delta computation to

minimize recomputation (and hence maximizes the reuse of prior

work). In otherwords, instead of computingQ(D i) from scratch for

each batch i, we utilize the fact that D i = D i−1 + ∆D i , and update

Q(D i−1) from the previous batch by a delta query ∆Q(D i−1 , ∆D i),

that is de�ned by ∆Q(D i−1 , ∆D i) = Q(D i) − Q(D i−1). �e intu-
ition is that computing ∆Q(D i−1 , ∆D i) would be much faster than

directly computing Q(D i). Similar intuition is shared by online ag-

gregation (OLA) [26] and incremental view maintenance [10, 25,

31], with slight di�erences in the de�nition of ∆D: For OLA and
iOLAP, ∆D is insertion of new sample tuples to the previous ac-
cumulated sample relation; while for delta view maintenance and

streaming systems, ∆D can also include deletion of old tuples.

3.1 Limitations of Existing Approaches
Delta query processing is a well-studied area. Yet, previous ap-

proaches can only provide e�cient delta update algorithms for

simple SPJA queries, and thus fall short in generalizing to com-

plex queries. In particular, we argue that previous delta update

techniques are static and coarse-grained. Speci�cally, previous

approaches generate delta update rules by only utilizing “static”

information—the query structure. Such delta update rules (as

shown in Figure 1) only exploit the strong compositionality of the

relational algebra, but do not consider the relations which the query

is evaluated on. As a result, these delta update rules are also “coarse-

grained”, in the sense that the delta queries in the rules are expressed

as a function of the previous relations and the delta relations. Con-

sequently, the rules cannot distinguish which subset of columns–or

even more �ne-grained, which columns of which subset of tuples–

in the �nal and any intermediary query result are subject to change

due to the update. Without �ne grained updates, for complexOLAP

● SELECT: ∆(σθR) = σθ(∆R)
● PROJECT: ∆(πĀR) = πĀ(∆R)
● JOIN: ∆(R1 & R2) = (∆R1 & R2) ∪ (R1 &∆R2) ∪ (∆R1 &∆R2)
● UNION: ∆(R1 ∪ R2) = (∆R1) ∪ (∆R2)
● AGGREGATE3 : ∆γĀ,Ψ=sumR = γĀ,Ψ=sum(∆R)

Figure 1: Delta update rules for simple SPJA queries

queries (such as those with evolving nested aggregates in θ and Ψ),
a large fraction of the query, sometimes even an entire subquery,

needs to be re-evaluated from scratch every time, incurring a lot

of overhead. Recently DBToaster [10] proposes to use higher-order

delta queries to alleviate these limitations. But it still relies on the

delta rules to generate the higher-order queries, and thus shares sim-

ilar limitations.

As an illustration, let us revisit the SBI query (Example 1). Fig-

ure 2(a) depicts its query plan. Assume we evaluate the SBI query

incrementally on the dataset shown in Figure 2(b), where the Ses-

sions relation is partitioned into p mini-batches {∆D1 ,⋯, ∆Dp},

each of size n (e.g., for n = 3, ∆D1 = {t1 , t2 , t3} and ∆D2 =

{t4 , t5 , t6} and so on). As we can see, operator ­ produces a

di�erent AVG(buffer_time) with new data added in each batch.

�is in turn a�ects ° (that �lters tuples using the current value

of AVG(buffer_time)), and± (that aggregates the �ltered tuples),
and requires them to be re-evaluated on all previously-processed tu-

ples in every iteration. Based on the delta update rules in Fig. 1, the

delta update query for SBI can be written as follows:

∆
±
γ(

°
σ(D i

¯
&

­
γ(D i))) =

±
γ(

°
σ(D i

¯
& (

­
γ(D i−1) ⊕

­
γ(∆D i))))

4

showing that we can only reuse subquery­ (i.e., γ(D i−1)), but have
to recompute the subquery involving operators ®, ¯, °, ± in Fig-
ure 2(a) every iteration. Note that since these static delta update

algorithms do not keep track of the distributions of data that has

already been seen, all recomputations on the same data are per-
formed again and again regardless of whether it is really neces-

sary. For example, let us look into the �rst two mini-batches. As

AVG(buffer_time) at­ evaluates to 37 in batch 1 and 35.3 in batch
2, operator°makes con�icting decisions about tuple t1 : t1 is �ltered
out in batch 1 and selected in batch 2. �erefore t1 needs to be evalu-
ated in batch 2. However, as the buffer_time of t2 (t3) is much less
(greater) than the AVG(buffer_time) in both batches, operator °
makes consistent decisions, and thus t2 and t3 do not need to be ide-
ally re-evaluated. Due to the coarse-grained delta update rules, ex-

isting engines repeatedly re-evaluate® to± on t2 and t3 regardless
of the above observation incurring signi�cant costs in each batch.

Quantitatively, the delta update cost increases linearly with batches,

hindering continuous update. Roughly, processing through all the

p mini-batches will process n ⋅ O(p2) data in total, which could be
much larger than the original dataset of size p ⋅ n.

3.2 Our Approach
On the contrary, we propose a novel delta update technique that

is both dynamic and �ne-grained. Speci�cally, we treat the changes
that could happen in the partial query results as uncertainties in the

results, and explicitly track the uncertainty at a much �ne-grained

level—per columnwithin speci�c tuples. Based on this tracking, we

develop a delta update algorithm that is much more targeted and

e�cient.

3 γĀ,Ψ represents an AGGREGATE operator with group-by column Ā
and aggregate function Ψ.
4
We annotate the equation with their corresponding operators in
Figure 2(a). ⊕ represents the delta update function forAVG aggregate
based on the running sum and running count.

(a)

session_id buffer_time (s) play_time (s)

∆D1

⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

t1
t2
t3

id1 36 238

id2 58 135

id3 17 617

∆D2

⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

t4
t5
t6

id4 56 194

id5 19 308

id6 26 319

⋯ ⋯ ⋯ ⋯

(b) Sessions
Figure 2: (a) �e query plan of the SBI query (Example 1), and (b)

an example of the Sessions relation.

Let us revisit the SBI query in Figure 2(a) as an example. By track-

ing uncertainty, we can identify that—as a result of aggregating in-

complete data—the column AVG(buffer_time) is uncertain at ­;
despite this uncertain column, the columns outputted by ¯ are de-
terministic as the (empty) join key is deterministic; the selection de-

cisions at° are uncertain (as they’re a�ected by AVG(buffer_time)
which is uncertain); �nally,± aggregates on a deterministic column
of an uncertain set of tuples. Furthermore, such uncertainty can

be tagged with a di�erent con�dence level on a per-tuple basis by

exploiting the “dynamic” information collected at runtime—for in-

stance, the data statistics of the uncertain columns in any interme-

diary and �nal query results. To be speci�c, if we couldmeasure that

AVG(buffer_time) obtained at ­, although uncertain, falls with a
given range (say [21.1, 53.9]) with a very high probability, we can

con�dently say that tuples like t2 (t3) which have buffer_time far
greater (less) than the range are always selected (�ltered) with high

probability across batches. And thus, we can avoid re-evaluating t2
and t3 in batch 2 (and all the following batches), leading to more
e�cient delta updates.

3.3 Supported Queries
In this paper, we limit the discussion of the iOLAP delta update al-

gorithm to positive relational algebra queries, i.e., any query that can

be composed using relational operators SELECT, PROJECT, JOIN5 ,

UNION, and AGGREGATE. Additionally we do not consider queries

that have approximate join/group-by keys under sampling. Gener-

alization to relational algebra including set di�erences, and queries

with approximate join/group-by keys under sampling, are out of the

scope of this paper, and would be ideal future directions. iOLAP

delta update algorithm relies on e�cient error estimation of uncer-

tain columns. We use recent advances in bootstrap-based error es-

timation, which can be applied to arbitrary user-de�ned aggregate

functions as long as they are Hadamard di�erentiable, or more intu-

itively smooth6 under sampling-based approximation, that are com-
mon pre-conditions to apply sampling to approximate queries. For

instance, MIN/MAX aggregates are not Hadamard di�erentiable, and

thus are usually not approximated through sampling approach.

4. UNCERTAINTY AND DELTA UPDATE
Asmentioned earlier, iOLAP treats the changes that could happen

in the partial results of any operator in a query as uncertainties. In
5
By JOIN we mean natural join throughout the paper. Outer joins
are not considered part of classical relational algebra, and require
set di�erence to express them.
6
See [33] by Pol and Jermaine for an intuitive de�nition of smooth
queries.

this section, we �rst categorize these uncertainties that exist in delta

processing, and study how they propagate through a query plan in

Sec. 4.1. Based on this uncertainty propagation theory, we then de-

velop a new delta update algorithm to compute partial results e�-

ciently in Sec. 4.2. Please note that the uncertainty propagation the-

ory introduced in this section is a slightly conservative version that

does not fully utilize statistics collected at runtime, but the delta up-

date algorithm built on top of it already subsumes the existing delta

update rules in Figure 1. Finally, in Sec. 4.3, we discuss the ideas

for optimizing the uncertainty propagation and the delta update al-

gorithm, by utilizing the statistics collected at runtime (Sec. 5) and

leveraging the query lineage (Sec. 6).

4.1 Uncertainty Dichotomy and Propagation
Given an operator in a positive relational query, the di�erence be-

tween the partial result R i produced by the operator at batch i and
the true �nal query result R of the operator can be characterized
by two basic properties: (1) their tuple multiplicities and (2) the at-

tribute values of the tuples in the result. On one hand, some tuples

that should be part of the true result (i.e., appear in R) are not in-

cluded in R i , while on the other, some tuples that are not part of

R appear in the partial result R i . We refer to this mismatch of tu-

ple multiplicities in the partial result as tuple uncertainty. Further-
more, even for same tuples, some of them in R i can have di�erent

attribute values than those in R. We refer to this mismatch in at-
tributes as attribute uncertainty. To summarize, there are two types
of uncertainties in partial results R i : (1) the tuple uncertainty, and
(2) the attribute uncertainty. Furthermore, please note that these
uncertainties are not just limited to the query result and can exist

in the output of all intermediate query operators, while propagating

through the query plan.

Next we discuss how each relational operator propagates these

two types of uncertainties in the query plan. For each relation R
at a particular batch i, we de�ne two types of tagging functions u#

(for tuple uncertainty) and uA (for attribute uncertainty) , that map

tuples in R to {T , F}:
● u# tags each tuple t ∈ R with whether the multiplicity of t is
uncertain or not, where u#(t) = T indicates that the multi-
plicity of t is uncertain, and u#(t) = F when it is not.

● For each attribute A of R, uA tags each tuple t ∈ R with
whether the value of attribute A in t is uncertain or not, where
uA(t) = T indicates that t.A is uncertain, and uA(t) = F
when it is not.

For any input relation R at the leaf level of a query plan, all its at-
tributes are deterministic, i.e., uA(t)=T for any attributeA in R. For
the tuple uncertainty, if R is not streamed in, u#(t) = F. Otherwise,
themultiplicity of each tuple t is de�ned by s(t; i)where s(⋅; i) is the
accumulated sampling function for the i-th batch. s(⋅; i) = 1 indi-
cates that a tuple has been seen (i.e., processed) in the �rst i batches
while s(⋅; i) = 0 indicates that it is not. Given that we always pro-

cess a new batch of data in each iteration, s(⋅; ⋅) has an property that
s(t; j) ≥ s(t; i) for j ≥ i. �us, if s(t; i) = 1 at batch i, we know
that the multiplicity of t will not change in subsequent batches and
can mark u#(t) = F. On the other hand, if s(t; i) = 0 , we mark

u#(t) = T . We denote the attributes referenced in f , which is either
a tuple function or an aggregate function, by attr(f). �e following
rules describe the uncertainty propagation in a query plan

7
.

● SELECT: SELECT propagates the attribute uncertainty of its

input relation, but could incur tuple uncertainty if the selec-

tion predicate is applied on uncertain attributes. �at is, if u′x
7
We use the SQL version of PROJECT and UNIONwhich are without
duplicate elimination. Duplicate elimination can be expressed using
AGGREGATE, and thus not explicitly discussed here.

are the tagging functions of R, then the tagging functions ux
of (σθR) are de�ned by

{
uA(t) = u′A(t)
u#(t) = u′#(t) ∨ ⋁B∈attr(θ) u

′
B(t)

● PROJECT: PROJECT propagates the tuple uncertainty of its in-

put relation, but could generate uncertain attributes if the pro-

jection functions are applied on uncertain attributes. �at is,

if u′x are the tagging functions of R, then the tagging functions
ux of (πA i=ψ i

R) are de�ned by

{
uA(t) = ⋁B∈attr(ψ) u

′
B(t

′
)

u#(t) = u′#(t′)

where t.A i = ψ i(t′) for ∀i.
● JOIN: JOIN propagates the attribute uncertainty and tuple

uncertainty of its input relations. Speci�cally, if u1x and u2x
are the tagging functions of R1 and R2 respectively, then the
tagging functions ux of (R1 & R2) are de�ned by

{
uA(t) = u i

A(t1)
u#(t) = u1#(t1) ∨ u2#(t2)

where A ∈ schema U i of R i , and t j = t on schema U j for

j = 1, 2.
● UNION: UNION propagates the attribute uncertainty and tu-

ple uncertainty of its input relations. Speci�cally, if u1x and u2x
are the tagging functions of R1 and R2 respectively, then the
tagging functions ux of (R1 ∪ R2) are de�ned by

{
uA(t) = u i

A(t)
u#(t) = u i

#(t)

where i = 1 or 2 and t ∈ R i .

● AGGREGATE: AGGREGATE is a bit complicated. Both of the at-

tribute uncertainty and tuple uncertainty of its input relation

could result in attribute uncertainty in its output; on the con-

trary, an output tuple has tuple uncertainty only if all input

tuples within a group have tuple uncertain. Formally, if u′x
are the tagging functions of R, then the tagging functions ux
of (γĀ,ΨR) are de�ned by

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

uA(t) = ⋁t′=t on Ā u
′
A(t

′
) and

uΨ(t) = ⋁t′=t on Ā(⋁B∈attr(Ψ)(u
′
B(t

′
) ∨ u′#(t′)))

u#(t) = ⋀t′=t on Ā u
′
#(t′)

As we can see, the attribute uncertainty and the tuple uncertainty

can cause each other, propagating and interleaving through a query
plan. Take the SBI query (Example 1) and its query plan depicted in

Figure 2(a) as an example. Figure 3 shows the uncertainty annota-

tions on the outputs of selected operators in the plan. Since the input

dataset to AVERAGE­ is streamed in and thus has tuple uncertainty,
the AVG(buffer_time) attribute in­’s output is uncertain. �is at-
tribute uncertainty further causes the tuple uncertainty in the output

of SELECT °, which subsequently causes attribute uncertainty and
tuple uncertainty in AGGREGATE ±.

4.2 Delta Update Algorithm
�e uncertainty propagation theory identi�es subsets of partial

results of the query operators that are subject to change across

batches. At each batch, all the uncertain values from the previ-

ous batch, both attributes and tuple multiplicities, need to be re-

computed and brought up-to-date with the new data. �erefore,

delta updating a query simply boils down to the problem of updat-

ing values with uncertainties in the output relations of the query op-

erators. Before diving into the detailed delta update rules, we �rst

session_id buffer_time play_time #

t1 id1(F) 36(F) 238(F) 1(F)
t2 id2(F) 58(F) 135(F) 1(F)
t3 id3(F) 17(F) 617(F) 1(F)
t4 id4(F) 56(F) 194(F) 0(T)
⋯ ⋯ ⋯ ⋯ ⋯
(a) Outputs of¬ and®/ Inputs for­ and¯

AVG(buffer_time) #

37(T) 1(F)
(b) Output of ­/ Input for
¯

buffer_time play_time AVG(buffer_time) #

t1 36(F) 238(F) 37(T) 1(F)
t2 58(F) 135(F) 37(T) 1(F)
t3 17(F) 617(F) 37(T) 1(F)

(c) Output of¯/ Input for°

buffer_time play_time AVG(buffer_time) #

t1 36(F) 238(F) 37(T) 0(T)
t2 58(F) 135(F) 37(T) 1(T)
t3 17(F) 617(F) 37(T) 0(T)

(d) Output of°/ Input for±

AVG(play_time) #

135(T) 1(T)
(e) Output of±

Figure 3: Uncertainty annotations of the SBI query (shown in Fig-

ure 2(a)) on the outputs of selected operators in batch 1. Note that

for¬we show tuples t4 and so on conceptually (and thus are grayed
out) to demonstrate the annotation. Physically these tuples have not

been processed and thus have multiplicity = 0 at batch 1.

introduce Principle 1 to handle and update the tuple and attribute

uncertainties.

Principle 1 (Delta Update Principle).

● Tuple Uncertainty. Tuples with tuple uncertainty may change
their participation in the outputs. �erefore, tuple uncertainty
should be updated as early as possible—at the �rst operator that
causes this tuple uncertainty—in order to minimize unneces-
sary computation on the corresponding tuple.

● AttributeUncertainty. Uncertain attributes should be updated
as late as possible, only when its value is used. �e core intu-
ition is to avoid updating attributes that are never used, and to
maximize the reuse of computation on the corresponding tuple.

As some tuples need to be remembered and re-evaluated in the

next batch, we name the collection of tuples that needs to be re-

membered (and preferably cached) by an operator, as the state of
that operator. Next, we devise the delta update rules for each rela-

tional operator according to Principle 1.

● SELECT. SELECT could incur tuple uncertainty if the predi-

cate is computed on uncertain attributes. �erefore, SELECT

saves each input tuple t into its operator state if t has no tu-
ple uncertainty at the input, but has tuple uncertainty in the

output. For instance, ° in Figure 2(a) saves all tuples in Ta-
ble 3(c) in its state a�er batch 1. All the uncertain attributes in

the state are then updated in the next batch.

● PROJECT and UNION.�ese operators do not change tuple un-

certainty. In other words, the operator states for PROJECT and

UNION are always ∅.

● AGGREGATE.AGGREGATE accumulates all the tuples seen so far

in order to deliver the correct running results. �us, AGGRE-

GATE constructs its state by saving the state from the previous

batch, along with all input tuples without tuple uncertainty

in the current batch. In practice, all the tuples in the state

can be compressed into a sketch state, which is much more

space-e�cient. For instance, to compute the average, in batch

1,­ in Figure 2(a) saves the running sum and running count
of all the tuples in Table 3(a) in its state. In general, any ag-

gregate function that can be computed using sub-linear space

can maintain the state of AGGREGATE space-e�ciently using

sketches. However, if the aggregated column is uncertain, the

state cannot be compressed into a sketch, instead each uncer-

tain attribute need to be updated in the next batch.

● JOIN. New incoming tuples from each input relation need to

be joined with all the previous tuples in the other input rela-

tion to produce the correct join result. �us, for each side of

the join, if the other side have tuples with tuple uncertainty,

JOIN constructs its state by augmenting its state from the pre-

vious batch with all its input tuples in the current batch with-

out tuple uncertainty, which in turn can greatly reduce the

intermediate operator state for JOIN. For instance, in batch 1,

¯ in Figure 2(a) saves Table 3(b) in its state but does not need
to save tuples in Table 3(a) in the state since the other side of

the join—Table 3(b)—does not have tuple uncertainty. All the

uncertain attributes in the state are then updated in the next

batch. In practice, many workloads join a large fact table with
smaller dimension table(s). �erefore, if we only sample and
stream the larger fact table, we only need to keep the smaller
dimension table in the JOIN operator’s state.

● SINK. We add a virtual operator SINK at the end of every

query plan. SINK reconstructs its from the state from the pre-

vious batch, along with all input tuples without tuple uncer-

tainty in the current batch. All the uncertain attributes in the

state are updated in the next batch.

One can easily verify that this delta update algorithm subsumes

the delta update rules used in previous work as in Figure 1. Some

viewlet transformation optimizations proposed in DBToaster [10]

can also be applied to our delta update algorithm (as shown in Ap-

pendix B. In combination, this conservative version of our delta up-

date algorithm can achieve the same higher-order delta update rules

of DBToaster [10].

4.3 Optimizing Delta Update
�e uncertainty propagation theory in Section 4.1 only utilizes

static information like the query structure and the monotonicity of

the sampling process, but does not exploit any dynamic information,

e.g., statistics collected at runtime about uncertain attributes (as dis-

cussed in Section 3.2). �erefore, it always conservatively tags all the

tuples in the same relation indi�erently with the same uncertainty

property, incurring unnecessary recomputation overhead.

�e key idea to optimize the uncertainty propagation, and thus

the delta update algorithm, is to introduce an even more �ne-

grained partitioning of both per-row and per-column uncertainty,

where: (1) per-row, we partition tuple uncertainty based on how
con�dent we are about whether a given tuple is uncertain; (2)
per-column, we only recompute uncertain attributes by leveraging
lineage-based lazy evaluation techniques.

Tuple Uncertainty. �e techniques used by iOLAP to handle tuple
uncertainty are based on an important observation:�e tuple uncer-
tainties, although in the same relation, may not be equally uncertain.
By exploiting dynamic information at query time, we can identify tu-
ples that are not likely to change their multiplicities across batches.
Speci�cally, we can use data statistics collected at runtime,

to estimate the distribution of uncertain attributes and get in-

sights into tuple uncertainty that is caused by attribute uncertainty.

�is can allow us to carefully partition the tuples with uncertain

multiplicities into two parts—the non-deterministic and the near-
deterministic sets. �e key intuition is that although tuples in the

near-deterministic set has tuple uncertainty, with very high proba-

bility they are unlikely to change their multiplicities in the following

batches. In contrast, the non-deterministic set of tuples are likely to

change their multiplicities. �erefore, we only need to save the tu-

ples in the non-deterministic set in the operator state, that will be

recomputed in the next batch. We will explain this optimization in

detail in Section 5.

Attribute Uncertainty. As discussed in Section 4.2, uncertain at-
tributes in operator states need to be updated with the latest values

in the next batch. �e previous delta processing techniques usually

interpret value update as deleting the old tuple followed by inserting

a tuple. However, this approach is ine�cient, as generating a new tu-

ple requires going through the entire plan. �e intuition of iOLAP is

that although the uncertain attributes in a tuple need to be recom-

puted, many computations involved in generating the tuple can be

avoided. Such computations include I/O operation (reading the in-

put tuples from disk), shu�ing the tuple according to a determinis-

tic key, and evaluating the deterministic attributes. iOLAP achieves

this by propagating the lineage information along with each uncer-

tain attribute, and thus enables �ne-grained update targeting only

the uncertain attributes. �is avoids re-generating the whole tuple

from scratch, and maximize the reuse of previous computations.

5. TUPLE UNCERTAINTY PARTITION
In this section, we describe the optimization technique to handle

tuple uncertainty.

5.1 Discovering Certainty in Uncertainty
As discussed in Section 4.1, the attribute uncertainty is �rst

brought into a query by evaluating an AGGREGATE on incomplete

data. Due to the blocking nature of the AGGREGATE operators, the

running results for aggregate functions (on samples of data) are

approximate and uncertain. �is makes complex OLAP queries

with nested aggregates non-monotonic, making simple delta main-

tenance techniques ine�cient. However, there is a key principle be-

hind all S-AQP techniques—running aggregate results will eventu-

ally converge to the true result (i.e., the aggregate result computed
on the full dataset) as the sample size increases. �erefore, as the

query engine processes through these batches, the running aggre-

gate results will concentrate in a relatively small range around the

true results, and this range will shrink asmore andmore data is pro-

cessed. In general, as the attribute uncertainty propagates through a

query plan, any uncertain attribute in the outputs of operators in a

query plan also shares this convergence property. iOLAP leverages

this convergence property of uncertain attributes. Before we dive

into details of the algorithm, let’s �rst make an observation using an

example.

Example 2. Assume that all the intermediate results of
AVG(buffer_time) throughout its online processing are within
the range of 37 ± 16.9 (Example. 1/Table 2(b)). �is implies that
across all batches, tuple t2 (with buffer_time = 58) will be selected,
while tuple t3(with buffer_time = 17) will be �ltered out. For these
tuples, the decisions made by the query engine will never change
across all batches. �us, if we know this fact a priori, we can prune
these near-deterministic tuples during online processing.

From the above example, we can see that by utilizing the con-

vergence property of uncertain attributes, the tuple uncertainty of

di�erent tuples can be classi�ed according to how con�dent we are

of the �lter decisions we made on the uncertain attributes. And for

the decisions we are quite con�dent of, we can classify those tuples

as “not having tuple uncertainty”, and thus eliminate the recompu-

tation on them.

Formally, for an uncertain attribute u in an intermediate tuple, we
de�ne its variation range as the set of all the possible values that u
may take during the online execution, denoted by R(u). For sim-
plicity, we uniformly de�ne the variation range of a deterministic

value d as itself, i.e., R(d) = {d}. Next, for simplicity, we will
explain the delta-maintenance algorithm using �ne-grained tuple

uncertainty by �rst assuming that these variation ranges are given,

and then explain how these variation ranges can be approximated

in practice. In batch i, at any predicate x ϑ y involving uncertain
values,

8 iOLAP classi�es the input tuples into two sets: the non-
deterministic set U i in which tuples satisfy R(x) ∩R(y) ≠ ∅, and
the near-deterministic set C i in which tuples satisfyR(x)∩R(y) =
∅. For instance, if R(AVG(buffer_time)) = [21.1, 53.9], then

t2 , t3 ∈ C1 , while t1 ∈ U1 . Clearly, for the tuples in U i , the predi-

cate may evaluate to di�erent answers in di�erent batches, while for

the tuples inC i , the predicatewill evaluate to the same answer across

all batches. �erefore, in batch (i − 1), we saveU i−1 in the state; and
in batch i, instead of evaluating Q(D i) from scratch by recomput-

ing bothU i−1 and C i−1 , iOLAP only needs to compute a delta update
based on U i−1 and ∆D i .

Of course, the variation ranges cannot be known until we have

�nished the query. In practice, iOLAP approximates the variation

ranges using running estimates. Next we will explain how we can

approximate the variation range using bootstrap. Note that boot-

strap can be substituted with other error estimation methods.

Recall that we use bootstrap to estimate the accuracy of the run-

ning query results. As a by-product of this process, we can obtain

a set of bootstrap outputs û for each uncertain value u, where û is
shown to be an accurate approximation of the true distribution of

u9 . In practice,
● We use the range de�ned by R̂(u) = [min(û) − ε ⋅

stdev(û),max(û) + ε ⋅ stdev(û)] to approximate R(u),
where ε is a slack variable that can be controlled by the user.

● R̂(u) may fail in the sense that some running value of u or
a bootstrap output in û exceed the variation range in some
batches, which will result in incorrect query answers. �us,

to check the integrity of R̂(u). we keep the history of R̂(u i)

at each batch i. At a new batch (i + 1), we check the integrity
of R̂(u i), or in other words, detect the failure, by checking
[min(ˆu i+1),max(ˆu i+1)] ⊆ R̂(u i).

● If the check succeeds, R̂(u) is updated by setting R̂(u i+1) =
[min(ˆu i+1) − ε ⋅ stdev(ˆu i+1),max(ˆu i+1) + ε ⋅ stdev(ˆu i+1)] ∩
R̂(u i). If the check fails, we trace up the history of R̂(u i),

pick the last batch j where R̂(u i+1) ⊆ R̂(u j), and recover

the correct query result by recomputing the query on the data

from batch (j + 1) to i.

Theorem 1. At batch i, the above algorithm delivers the same
query result as Q(D i), i.e., the result of evaluating a query Q on D i .
Proof. We give a brief sketch-proof by induction for�eorem 1.

It holds obviously at batch 1. Assume that it holds up to batch i. If
[min(ˆu i+1),max(ˆu i+1)] ⊆ R̂(u i) for any x and y in predicate xϑy,
then R(xu i+1) ∩R(yu i+1) ⊆ R(xu i) ∩R(yu i), which implies that
the non-deterministic sets U i+1 ⊆ U i . As we will re-evaluate U i in

batch (i + 1), we can guarantee to deliver the correct query result as
Q(D i+1). �e proof follows similarly for the case where the integrity
check fails and we recover the correct query result. Note that each

bootstrap trial can be viewed as evaluating the query on the same

set of input tuples with di�erent multiplicities. �us, the bootstrap

estimation is also guaranteed to be correct.

8ϑ is some comparison operator.
9
We refer interested readers to [8] for the implementation details of
bootstrap.

buffer_time play_time AVG(buffer_time) #

t1 36(F) 238(F) 37,R = [21.1, 53.9](T) 1(F)
t2 58(F) 135(F) 37,R = [21.1, 53.9](T) 1(F)
t3 17(F) 617(F) 37,R = [21.1, 53.9](T) 1(F)

(a) Output of¯

buffer_time play_time AVG(buffer_time) #

t1 36(F) 238(F) 37,R = [21.1, 53.9](T) 0(T)
t2 58(F) 135(F) 37,R = [21.1, 53.9](T) 1(F)
t3 17(F) 617(F) 37,R = [21.1, 53.9](T) 0(F)

(b) Output of°

AVG(play_time) #

135,R = ⋯(T) 1(F)
(c) Output of±

Figure 4: Uncertainty annotation of the SBI query (shown in Fig-

ure 2(a)) at selected operators in batch 1, using the new uncertainty

propagation rules.

�e user can also decrease the chance of failure-recover by setting

a larger ε (at the cost of increasing the size of the non-deterministic
set). In practice, setting ε to 2× the standard deviation of û achieves
a good balance in controlling the probability of failure-recover and

reducing the size of the non-deterministic sets (See Section 8).

5.2 Propagation of Non-Deterministic Sets
In this subsection, we summarize how the new tuple uncertainty

propagates through the query plan, and elaborate the delta process-

ing using non-deterministic sets. We modify the tagging functions

by introducing per-row partitioning. In general, the new uncer-

tainty propagation rules are the same as those discussed in Sec-

tion 4.1, but are di�erent for tuple uncertainty in SELECT.

● SELECT. A tuple t in (σθR) does not have tuple uncertainty
if tuple t does not have tuple uncertainty in R, and θ = true
for all possible values of uncertain attributes in θ. �at is, as-
suming θ = x ϑ y where ϑ is some comparison operator, and
the tuple uncertainty tagging function for relation R is u′# , the
tuple uncertainty tagging function u# of (σθR) is de�ned by

u#(t) = u′#(t) ∨ (R(x) ∩R(y)) ≠ ∅)

Figure 4 demonstrates the uncertainty annotation of the SBI

query in batch 1. Note that ¯ now annotates AVG(buffer_time)
with its variation rangeR, which in turn is used by ° to prune the
tuple uncertainty of t2 and t3 , yielding u#(t2) = u#(t3) = F by fol-
lowing our new SELECT rule. As a result, the output of± is marked
without tuple uncertainty, as at least t2 is contributing to the aggre-
gate result.

Delta Update Rules. �e new uncertainty propagation rules signif-
icantly optimize the states maintained by operators. By following

the new uncertainty annotation, SELECT ° in Figure 2(a) now only
saves t1 (marked in dark shade in Figure 4) in the state, while t2 and
t3 are pruned from the state because they are not marked with tu-
ple uncertainty; AGGREGATE ± saves the running sum and running
count of t2 (marked in light shade in Figure 4) in its state.

6. LINEAGE AND LAZY EVALUATION
As discussed in Section 4.2, iOLAP requires all uncertain at-

tributes in states of the previous batch to be updated with the latest

values in the current batch, in order to correctly compute the delta

update. Take the SBI query as an example. During batch 1, t1 is clas-
si�ed inU1 and thus saved in the state of° (as in Figure 5(a)). Dur-
ing batch 2, since­updates the inner aggregateAVG(buffer_time)
to 35.3 (as in Figure 5(b)), t1 in Figure 5(a) has to be updated to 35.3
in order to evaluate the predicate correctly.

As discussed in Section 4.3, it is obviously a waste to regenerate

a tuple from scratch just in order to update a couple of uncertain

attributes. Additionally, since the cached data is just a subset of the

running result set, regenerating the tuples from scratch would re-

quire random I/O access to the input relations. However, the fol-

lowing example reveals an important observation that can help us

avoid such wasteful recomputation.

Example 3. Consider the SBI query plan shown in Fig-
ure 2(a). In the input relation of SELECT °, although attribute
AVG(buffer_time) is uncertain, attribute play_time is determin-
istic. Furthermore, the join relationship between tuples from­ and®
is also deterministic. �erefore, we should avoid re-evaluating JOIN
and re-generating the play_time attribute from scratch.

�e key idea here is to locally recompute and update the uncer-
tain attributes, without touching other deterministic attributes. �e

recomputation is local in the sense that each operator can update its

own saved state without referencing other operators.

To achieve this local update algorithm, iOLAP uses two tech-

niques: (1) Lineage Propagation. iOLAP propagates with each tuple
the information about how its uncertain attributes are computed,

i.e., its lineage. (2) Lazy Evaluation. During delta update, iOLAP
updates the saved state by re-evaluating the carried lineage informa-

tion, without re-generating the whole tuple from scratch. �is eval-

uation is done lazily only when the corresponding uncertain values

are accessed. Next, we will discuss these two techniques in detail.

6.1 Lineage Propagation
A natural �rst step is to decide the lineage information that needs

to be propagated. Intuitively, we can model the computation used
to generate an uncertain attribute u as a lineage function, i.e., u =

f (x̄). �e function de�nition f and the input parameter x̄ are
enough to recompute u. Note that f is static and shared by all tuples
in the relation, and thus is extracted at compile time (i.e., it does not

need to propagated with each tuple). �us, iOLAP only propagates

x̄, de�ned as Lineage:

Definition 1 (Lineage). We de�ne the lineage for attribute A
of tuple t output by a query plan P, denoted byLt .A(), inductively as:

● Base Relation. �e lineage function of a base relation R is de-
�ned by LA(t) = {t.A}.

● SELECT. IfL′ is the lineage function of R, then the lineage func-
tion of σθ(R) is de�ned by LA(t) = L′A(t).

● PROJECT. If L′ is the lineage function of R, then the
lineage function of πA i=ψ i

(R) is de�ned by LA(t) =

⋃B i∈attr(ψ i)L
′
B i (t

′
) where t.A i = ψ i(t′) for ∀i.

● JOIN R1 & R2. If L1 and L2 are the lineage functions of R1 and
R2 respectively, then the lineage function of (R1&R2) is de�ned
by LA(t) = Li

A(t i) where A ∈ schema U i of R i and t j = t on
schema U j for j = 1, 2.

● UNION. If L1 and L2 are the lineage functions of R1 and R2 re-
spectively, then the lineage function of (R1 ∪ R2) is de�ned by
LA(t) = Li

A(t i) where i = 1 or 2 and t ∈ R i .
● AGGREGATE. If L′ is the lineage function of R, then the lineage
function of γĀ,Ψ(R) is de�ned by LA(t) = ⋃t′=t on ĀL

′
A(t

′
)

and LΨ(t) = ⋃t′=t on Ā⋃B∈attr(Ψ)L
′
B(t

′
).

Block-wise Lineage. Note that since aggregates are computed from
a large set of values, propagating the lineage of aggregates will cause

an explosion in the storage and networking overhead. We optimize

the lineage propagation by dividing a query into multiple lineage
blocks. A lineage block is a maximal subtree of the query plan that
is an SPJA block, i.e., a subtree consisting of any combinations of

select, project and join operators followed by an aggregation oper-

ator. It is maximal in the sense that extending the subtree with any

buffer_time play_time AVG(buffer_time) #

t1 36(F) 238(F) 37,R = ⋯ (T) o(T)
(a) State of° at Batch 1

AVG(buffer_time) #

35.3,R′ = ⋯ (T) 1(F)
(b) Output of­ at Batch 2

buffer_time play_time AVG(buffer_time) #

t1 36(F) 238(F) 37,R = ⋯,L = {(­, key=_)} (T) o(T)
(c) State of° at Batch 1 with Lineage

Figure 5: Lineage propagation and lazy evaluation of iOLAP.

node in the query plan will violate this requirement. As an exam-

ple, the query plan shown in Figure 2(a) can be divided into two

lineage blocks: {¬,­}, {®,¯,°,±}. iOLAP propagates lineage

within each lineage block, while simply propagating the aggregate

results along with their corresponding group-by keys between lin-

eage blocks, thus bounding the overall cost of lineage propagation.

Formally, De�nition 1 is modi�ed as:

● AGGREGATE. IfL′ is the lineage function of R, then the lineage
function of γĀ,Ψ(R) is de�ned byLA(t) = {(rel(γ), t.key)},
where rel(γ) is a unique reference to the output relation of
γĀ,Ψ(R) and t.key is the group-by key of t.

Figure 5(c) shows the state of ° with lineage. We can see that

AVG(buffer_time) in t1 is annotated with the lineage “computed
from the aggregate of group (key=_) in the output of­”.
Folding deterministic value. We can fold deterministic part of
the lineage function into a single attribute, and therefore reduce

of the size of the lineage propagated with each tuple. Here deter-
ministicmeans that the subexpressions do not involve uncertain at-
tributes and thus remain unchanged across batches. For instance,

in sum(x) + y + 3, we can fold y + 3 into a single expression z, and
propagate z instead of y + 3.

6.2 Lazy Evaluation
It is straightforward to lazily evaluate an uncertain attribute if its

propagated lineage does not involve aggregates. However, it is less

obvious when the lineage involves aggregates. As we only propa-

gate a reference to the aggregate results, along with their group-by

keys across lineage block boundaries, we need to join the up-to-

date aggregate results with the propagated lineage information in

order to update the corresponding uncertain values. For example,

to update AVG(buffer_time) of t1 (as in Figure 5(c)) at batch 2,
one needs to join it with the output of ­ in Figure 5(b) to retrieve
the latest AVG(buffer_time). Formally, if the lineage of t is de-
�ned as LA(t) = {(rel , key)}, lazy evaluation of t requires nat-
ural joining t with the relation rel on column key and projecting
onto column rel .A, i.e., Πre l .A({t} &ke y rel). Joining t and rel is
non-trivial and o�en requires shipping data, because t and rel are
usually distributed according to di�erent shu�e keys, especially in

a distributed SQL engine like SparkSQL. However, in practice the

aggregate relation rel is usually very small, and it is o�en very e�-
cient to broadcast-join t and rel by broadcasting rel to all the ma-
chines. Finally, we conclude this section with an important obser-

vation. Note that this update process is modeled as a join query, and

is thus able to be optimized using the underlying SQL optimization

framework by choosing the most cost-e�ective way to deliver the

lineage information.

7. IMPLEMENTATION
In this section, we present the implementation details of iOLAP.

Mini-Batch Execution Model. We use a mini-batch execution
model to implement iOLAP. As shown in Figure 6(a), the mini-

(a)

SQL Query

Query Controller

Spark Engine

HDFS

Delta Update Query

Online Query Rewriter

Launch Collect Results, Monitor

SparkSQL Complier

Online Operator Implementations

SparkSQL Engine

(b)

Figure 6: (a) and (b) �e mini-batch execution model and system

architecture of iOLAP.

Workload Batch Size # of Tuples Per Batch

TPC-H (lineorder) 11.5GB 86, 000, 000

TPC-H (partsupp) 7.5GB 80, 000, 000

TPC-H (customer) 2.5GB 15, 000, 000

Conviva 25.6GB 10, 600, 000

Table 1: Batch sizes used for the relations that are streamed in

batch model treats the iterative query processing of iOLAP as a se-

ries of short and independent jobs. At each batch, the job takes the

new incoming data and the states from the previous batch as input,

and produces the query results and a set of states for the next batch.

�e mini-batch execution model can easily utilize the distributed

computation resources, handle fault tolerance and stragglers, and

better integrate with existing batch-oriented database systems. Last

but not least, it is worth noting that iOLAP can be implemented us-

ing other execution models—such as the streaming operator model

commonly used in existing streaming and online aggregation sys-

tems [26, 32, 6, 22, 30, 35].

System Architecture. We have implemented iOLAP in Spark-

SQL [4], a distributed OLAP engine built on top of Spark. iOLAP

is open-sourced [2]. Figure 6(b) depicts the system architecture of

iOLAP. iOLAP extends SparkSQL in three modules:

(1) Online Query Rewriter. �e online query rewriter rewrites the
query into a delta update query, which when plugged with di�erent

mini-batches of data, turns into a series of mini-batch queries. �is

rewriting includes (1) adding columns for bootstrap and lineage;

(2) replacing operators with their online counterparts; (3) modify-

ing plans to support lazy evaluation. We have a detailed discussion

about query rewriting in Appendix C. �e online query rewriter

simply consists of a set of plan rewriting rules. It can be easily inte-

grated into a relational query compiler.

(2)Online Operator Implementations. We modify the SparkSQL en-
gine with implementations of online operator. Compared to the

standard relational operators, these online operators can store and

load states as in Section 4.2.

(3) Query Controller. �e query controller partitions the input data
into mini-batches, schedules the delta update query on each mini-

batch and collects query results. �e controller also monitors the

correctness of all the variation ranges, and schedules recomputing

jobs to recover the query result when a failure is detected. �e query

controller is implemented as a thin user application in Spark driver.

8. EXPERIMENTAL STUDY
In this section, we evaluate the e�ectiveness and e�ciency of

iOLAP. All the experiments are performed on a EC2 cluster of 20

r3.2xlarge machines (each with 8 vCPU
10
, 61GB of RAM and 160GB

SSD). All the data is stored on S3. Our experiments are conducted

on both synthetic and real-world workloads:

10
Each vCPU is a hyperthread of an high frequency Intel Xeon E5-
2670 Processor.

● A synthetic 1TB dataset from the TPC-H benchmark [5]. As

real-life large scale OLAP usually use denormalized relation

schema to avoid expensive distributed joins, we project the

TPC-H relation onto a schema similar to the SSB benchmark.

Speci�cally, we join table lineitem and orders into a single

relation lineorder, but keep other relations unchanged. We

choose a subset of the TPC-H benchmark queries which in-

clude all the queries with nested subqueries structures (Q11,

Q17, Q18, Q20, Q22), and a representative subset of the rest

which are all simple SPJA queries. We used the same TPC-H

queries as in [39].

● A 2TB subset of a 17TB anonymized real-world video con-

tent distribution workload from Conviva Inc. [1], comprising

of a de-normalized fact table. We compose a query workload

based on the real analysis used in [29, 20] on the same dataset,

which involves simple SPJA queries (C3, C5, C11, C12), com-

plex queries with nested subqueries and HAVING clauses (C1,

C2, C4, C6, C7, C8, C9, C10), UDF (C6, C7) and UDAF (C8,

C9, C10). �e queries with nested subqueries are similar to

those in the TPC-H benchmark.

During the experiments, we always stream in the fact table or the

largest table (lineorder, partsupp or customer in TPC-H) used

in the queries, and use bootstrap with 100 trials for error estima-

tion. Unless speci�ed, we use the batch sizes as shown in Table 1,

and the default slack parameter = 2.0 for iOLAP throughout the

experiments. We compare the performance of iOLAP with exist-

ing online processing techniques in OLA [26] and incremental view

maintenance work [10, 25, 31], speci�cally DBToaster [10], which

is the state-of-the-art delta processing algorithm. We implement

the higher-order delta update algorithm of DBToaster (referred to

as HDA) without code generation and indexes on SparkSQL, as code

generation and indexes are outside the scope of this paper.

8.1 End-to-End Performance
In this section, we evaluate the e�ectiveness of incremental OLAP

interface for interactive analysis by comparing iOLAPwith the batch

processing model of a traditional OLAP engine (named the base-
line), i.e., answering the query on the original dataset using unmod-
i�ed SparkSQL. �e results are shown in Figure 7(a), 7(b) and 7(c).

Figure 7(a) demonstrates a typical query processing in iOLAP us-

ing C8 from the Conviva workload. As one can see, any traditional

query engine will only be able to deliver an answer a�er processing

the entire dataset, which in this case, would incur 10.7 minutes la-

tency (marked by the vertical bar). On the other hand, iOLAP can

deliver an approximate answer in 39.4 secs (i.e., only in about 6.1%

of the whole query time). Furthermore, iOLAP continuously re-

�nes the answer at a very user-friendly pace of roughly every 10 sec-

onds. It is worth noting that while iOLAP incurs an additional 50%

overhead in processing the whole dataset as compared to the base-

line (primarily due to the error estimation overheads and schedul-

ing multiple mini-batch jobs), it enables the user to make a smooth

trade-o� between error and latency by allowing her to stop the query

execution at any time. For instance, if the user is satis�edwith an ac-

curacy of say, 2% relative standard deviation, she can stop the query

at 1.6 minutes, which is almost 7× faster than a batched execution.

Figure 7(b) and 7(c) plot more results on all the TPC-H and Con-

viva queries. For the sake of presentation, we only plot (1) the query

time of the baseline to process all the data (denoted by baseline),
(2) the query time of iOLAP to process all the data (denoted by iO-

LAP), (3) the query time of iOLAP to process a 5% sample (denoted

by iOLAP on 5% data), and (4) the query time of iOLAP to process
a 10% sample (denoted by iOLAP on 10% data). For clarity, we also
mark the relative ratio between iOLAP and baseline in the �gures.

0%

1%

2%

3%

4%

5%

6%

 0 100 200 300 400 500 600 700 800 900 1000

baseline
R

el
at

iv
e

S
ta

nd
ar

d
D

ev
ia

tio
n

Time (s)

(a)

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

Q1 Q3 Q5 Q6 Q7 Q11
Q17

Q18
Q20

Q22

Q
ue

ry
 L

at
en

cy
 (s

)

baseline
iOLAP

2.5
X

1.4
X

1.4
X

1.2
X

1.2
X

1.9
X

1.7
X 1.5

X

1.8
X

1.9
X

iOLAP on 5% data
iOLAP on 10% data

(b)

 0

 200

 400

 600

 800

 1000

 1200

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
C11

C12

Q
ue

ry
 L

at
en

cy
 (s

)

baseline
iOLAP

1.9
X 1.4

X

1.4
X

1.9
X

1.4
X

2.1
X

1.5
X

1.5
X

1.6
X

1.3
X

1.1
X

1.1
X

iOLAP on 5% data
iOLAP on 10% data

(c)

Figure 7: (a) �e relative standard deviation vs. query time curve delivered by iOLAP on Conviva C8. We plot the values for the �rst 10 mini-

batches, and then for brevity, every 5 mini-batches a�er that. (b) and (c)�e query times of the baseline, iOLAP to deliver approximate results

on 5% and 10% samples, and the iOLAP to process all the data for TPC-H and Conviva workloads respectively.

 0.1

 1

 10

 1 10 100

H
D

A
/iO

LA
P

B
at

ch
 L

at
en

cy
 R

at
io

Batch #

Q1 Q3 Q5 Q6 Q7

(a)

 0.1

 1

 10

 100

 1 10 100

H
D

A
/iO

LA
P

B
at

ch
 L

at
en

cy
 R

at
io

Batch #

Q11
Q17
Q18
Q20
Q22

(b)

 0.1

 1

 10

 1 10 100

H
D

A
/iO

LA
P

B
at

ch
 L

at
en

cy
 R

at
io

Batch #

C3
C5

C11
C12

(c)

 0.1

 1

 10

 100

 1 10 100

H
D

A
/iO

LA
P

B
at

ch
 L

at
en

cy
 R

at
io

Batch #

C1
C2
C4
C6
C7
C8
C9

C10

(d)

 0

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50 60 70

iO
LA

P
 #

 o
f R

ec
om

pu
te

d
Tu

pl
es

 p
er

 B
at

ch
 (X

 1
04)

Batch #

Q11
Q17
Q18
Q20
Q22

(e)

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 0 10 20 30 40 50 60 70 80

iO
LA

P
 #

 o
f R

ec
om

pu
te

d
Tu

pl
es

 p
er

 B
at

ch
 (X

 1
05)

Batchs

C1
C2
C4
C6

C7
C8
C9

C10

(f)

Figure 8: (a)-(d) �e ratio of query times of iOLAP and HDA in the �rst 10 batches, and for brevity every 5 mini-batches a�er that, for TPC-H

((a) and (b)) and Conviva ((c) and (d)) workloads respectively. (e) and (f) �e number of tuples recomputed by iOLAP in the �rst 10 batches,

and for brevity every 5 mini-batches a�er that, for TPC-H and Conviva workloads respectively.

When processing the whole dataset, iOLAP incurs 60% overhead on

average, and at most cases the overhead is below 100%. Again, these

overheads are primarily due to the use of bootstrap for error estima-

tion and the scheduling cost of multiple mini-batch jobs. Moreover,

at query time, especially in a distributed environment, the majority

of the query latency is spent on shu�ing data, computing joins, etc.,

compared towhich the relative overhead incurred by iOLAP is small.

It is also worth noting that iOLAP is able to deliver approximate an-

swers much faster than the baseline, e.g., if an approximate answer

computed on a 10% sample is all that is needed, iOLAP usually takes

only 10% to 20% of the baseline latency.

8.2 Delta Processing of iOLAP
In this subsection, we study the performance of the delta main-

tenance algorithms used by iOLAP for incremental query process-

ing. We compare iOLAP with HDA. In this section, we focus on

breakdown experiments that shed light on the performance bene�ts

brought by iOLAP. We have more experiments showing end-to-end

performance comparison between iOLAP and HDA in Appendix D.

Delta Update Latency. We compare the query latency per batch
used by iOLAP and HDA. We plot the ratio of the query times spent

by HDA and iOLAP for each batch in Figure 8(a)-8(d). For clarity, we

plot both the X and Y axes using log scale. We can observe that the

trends of the per-batch latency ratios in general fall into two classes:

For simple SPJA queries (shown in Figure 8(a) and 8(c)), the perfor-

mance of iOLAP and HDA is comparable, this clearly demonstrates

that the delta processing techniques of iOLAP boil down to the clas-

sical delta processing techniques, as discussed at the beginning of

Section 5. On the other hand, for complex queries with nested sub-

queries (shown in Figure 8(b) and 8(d)), iOLAP signi�cantly out-

performs the classical delta-maintenance algorithms. Speci�cally,

iOLAP performs slightly slower than HDA in the �rst batch (because

iOLAP need extra work on caching uncertainty sets, caching in-

put relations for joins etc. as discussed in Section 5.2), but is much

faster than HDA in the following batches. Furthermore, the per-batch

query latency ratio grows linearly in general, which shows that the

performance of HDA degradeswithmore data processed; on the con-

trary, iOLAP achieves almost constant query time for each batch.

�is is because that in the classical algorithms, every update on an

inner aggregate subquery causes the engine to recompute the outer

query on the entire data that was previously processed, while iOLAP

could e�ectively limit the recomputation needed in each batch. Un-

like other queries, the curves of TPC-H Q11 and Q20 �atten out.

�is is because their outer queries join two aggregate subqueries

which are small in size, and thus are less expensive to be recom-

puted. Even though, iOLAP outperforms HDA in batch latency for

Q20, as it avoids most of the recomputation of the outer query.

Number of Tuples Recomputed. We further look into the delta
processing by studying the number of tuples recomputed in each

mini-batch in iOLAP. Figure 8(e) and 8(f) depict the number of tu-

ples recomputed in each batch. We only plot the curves for complex

queries with nested subqueries as simple SPJA queries do not have

recomputation. Recall that we use the default batch sizes in Table 1.

�e numbers of tuples recomputed per batch shown in the �gures

are almost negligible compared to the average number of incoming

tuples per batch (some of which are even 0), which incurs very lit-

tle recomputation overhead. It is also worth noting that for almost

all the queries, the number of tuples recomputed grows sub-linearly

across batches, which demonstrates the e�ciency of the tuple un-

certainty partitioning technique in iOLAP.

Optimization Breakdown. To better understand the delta update
algorithms used in iOLAP, we conducted an experiment to study

the e�ectiveness of the two major optimizations: (1) tuple uncer-

tainty partitioning, denoted by OPT1, and (2) lineage propagation

and lazy evaluation, denoted by OPT2. We gradually turned o� the

optimizations until fall back to HDA. We show the breakdown re-

sults of C2 from Conviva as an example in Figure 9(a). As we can

see, the tuple uncertainty partitioning limits the recomputation to

the non-deterministic sets, which reduces the query latency of each

mini-batch to almost 25% of that of HDA. However, we still need

to recompute the non-deterministic set from scratch. �e lineage

propagation and lazy evaluation maximize reusing of the computa-

tion for the tuples that need to be recomputed, bringing down the

query latency per batch by another 18%.

8.3 Memory Utilization of iOLAP
In this section, we study the memory utilization of iOLAP. Due

to space limit, we only show the experiment results on the TPC-H

workload. �e results on the Conviva workload are similar and are

available in Appendix D.

We plot thememory overhead caused by keeping states for opera-

tors in Figure 9(b). Since JOIN only save states in the �rst batch (due

to the fact that all joins in the experiments are between a streamed

fact table and dimension tables) but other operators save states every

batch, we show the states of JOIN and other operators separately. As

shown, iOLAP only need to keep states of a few hundreds MBs for

most queries. Exceptions are Q3, Q5, Q7, Q11, Q18 and Q20, which

have a large JOIN states (5-50GB) because they have many joins due

to a snow�ake schema. However, it is worth noting that these JOIN

states are already optimized to only keep the small dimension ta-

bles (see Section 4.2), as shown by the fact that the JOIN states are

much smaller than the total amount of data shipped by the baseline.

Moreover, the JOIN states in memory can always be spilled to disk.

We also study the data footprint overhead of bootstrap and lin-

eage propagation of iOLAP.�ese techniques require expanding the

intermediate query results with extra columns, incurring a larger

data footprints than the baseline. As iOLAP is built on SparkSQL,

which uses a pipeline implementation, these data footprints are

eventually re�ected on the data shipped across network (shu�ed or

broadcasted) at query time. Figure 9(c) compare the data shipped

by the baseline and iOLAP. As di�erent operator has di�erent data

footprint overhead (e.g., the overhead can go up to 100× for AGGRE-

GATE, but much smaller for other operators), we divide the queries

into two categories: (1) Queries that only ship AGGREGATE results

(e.g., Q1, Q6, Q20, Q22), which only ship a small amount (< 10GB)

of data (2) Queries that ship results of a mixed operators (e.g., Q3,

Q5, Q7, Q11, Q17, Q18), which ship > 10GB data in our experiments.

�is classi�cation can be veri�ed by the data shipped by the base-

line. As shown, iOLAP-Total has a small overhead for both cate-

gories compared to the baseline (100MB-9GB for (1) and 23%-45%

for (2)). Additionally the data footprint of iOLAP-Per-Batch is 1-2

orders of magnitude smaller than that of the baseline, which implies

that the userwould shu�emuch less data if she stops the query early.

8.4 Parameter Tuning
We next study tuning the parameters of iOLAP, i.e., the slack pa-

rameter and batch sizes in practice. We show the experiment results

on Conviva. �e results on TPC-H are similar and can be found in

Appendix D.

Slack Parameter. As discussed in Section 5, the approximate al-
gorithm to estimate the variation ranges has a tunable knob—the

slack parameter, that directly impacts (1) the probability of failure-

recovery happening at query time, and (2) the size of the non-

deterministic set. In short, a larger slack parameter will decrease

the probability of failure-recovery, but increase the size of the non-

deterministic set and thus increase the recomputation per batch,

and vice versa. �erefore, the user needs to tune this parameter to

make the optimal trade-o� in practice. We study the impact of this

slack parameter by varying it from 0 to 2.5, andmeasuring the prob-

ability of failure-recovery and the size of the non-deterministic set.

�e results are shown Figure 9(d). Interestingly, we �nd out that

setting a slightly bigger slack can signi�cantly reduce the probabil-

ity of failure-recovery. With the slack increasing, the probability of

failure-recovery quickly goes to 0. For instance, setting slack = 0.5

reduces the failure probability by 7 − 8× on average compared to

the extreme case (slack = 0); when slack = 2.0, all queries have no

failure-recovery. On the other hand, increasing the slack parameter

can increase the size of the non-deterministic set. But in practice,

even a very small sample contains enough data tomake the variation

range concentrate in a very small range. �us, the non-deterministic

set does not increasemuch. �e results are shown in Figure 9(e). All

in all, we �nd out that slack = 2.0 leads to a good trade-o� in prac-

tice.

Batch Size. Another tunable knob of iOLAP is the batch size. In
practice, the batch size depends on two factors: (1) how interactive

the user wants to get updates on the query results, and (2) howmuch

latency of the whole query processing the user can tolerate. Smaller

batch sizes will reduce the query latency spent in each mini-batch,

but increase the number ofmini-batches and thus increase the over-

head of schedulingmoremini-batch jobs. Figure 9(f) and 9(g) show

how per-batch latency and overall latency change with varying the

batch size. Clearly, with a larger batch size, the per-batch latency

increases linearly, but the overall latency decreases linearly.

9. RELATED WORK
Online Aggregation. Online aggregation [26] and its succes-

sors [19, 32] proposed the idea of allowing users to observe the

progress of aggregation queries and control the execution on the �y.

�e users can trade accuracy for time in a smooth manner. How-

ever, online aggregation is limited to simple SPJA queries without

any support for nested aggregation subqueries.

Sampling-based Approximate Query Processing. �ere has been
substantial work on using sampling to provide approximate query

answers, many of which [7, 9, 12, 17, 34] focus on constructing

the optimal samples to improve query accuracy. STRAT [17], Sci-

BORQ [34], Babcock et al. [12] and AQUA [7] construct and/or pick

the optimal strati�ed samples given a �xed time budget, but do not

allow users to specify an error bound for a query. BlinkDB [9] sup-

ports sample selection given user-speci�ed time or accuracy con-

straints. Such selection relies on an error-latency pro�le, which is

built for a query by repeatedly trying out the query on smaller sam-

ple sizes and extrapolating the points. iOLAP relies on simulation-

based bootstrap techniques used by BlinkDB to estimate the varia-

tion ranges of uncertainty attributes. �erefore, modulo the strati-

�ed sampling building phase, a �rst iteration of iOLAP is the same

as BlinkDB.Di�erent fromBlinkDB-likeAQP systems that provides

near-instantaneous approximate result output, iOLAP can provide

progressively approximate results over time. iOLAP does not require

preparing a �xed sized sample beforehand, which simpli�es the de-

sign of AQP systems. Additionally, given a query and a user-de�ned

error bound, BlinkDB relies on an estimationmodule to pick a sam-

ple size. If the answer on this sample isnÕt accurate, or it doesnÕt

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 2 4 6 8 10 12 14 16 18 20

B
at

ch
 L

at
en

cy
 (s

)

Batch #

iOLAP=OPT1 + OPT2
HDA

OPT1

(a)

 1

 10

 100

 1000

 10000

 100000

 1x106

Q1 Q3 Q5 Q6 Q7 Q11
Q17

Q18
Q20

Q22

S
iz

e
of

 C
ac

he
d

S
ta

te
 (M

B
)

Operators except Join
Join Operators

Baseline

(b)

 0.1

 1

 10

 100

 1000

 10000

 100000

 1x106

Q1 Q3 Q5 Q6 Q7 Q11
Q17

Q18
Q20

Q22

S
iz

e
of

 D
at

a
S

hi
pp

ed
 a

t Q
ue

ry
 T

im
e

(M
B

)

Baseline
iOLAP-Total

iOLAP-Per-Batch

(c)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

C1 C2 C4 C6 C7 C8 C9 C10

P
ro

ba
bi

lit
y

of
 F

ai
lu

re
-R

ec
ov

er

slack=0
slack=0.5

slack=1
slack=1.5

slack=2
slack=2.5

(d)

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

C1 C2 C4 C6 C7 C8 C9 C10

A
vg

 #
 o

f T
up

le
s

R
ec

om
pu

te
d

P
er

 B
at

ch

slack=0
slack=0.5

slack=1
slack=1.5

slack=2
slack=2.5

(e)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
C11

C12

A
ve

ra
ge

 B
at

ch
 L

at
en

cy
 (m

s)

batch size=15.4 GB
batch size=20.5 GB
batch size=25.6 GB
batch size=30.7 GB
batch size=35.8 GB

(f)

 0

 200

 400

 600

 800

 1000

 1200

 1400

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
C11

C12

To
ta

l Q
ue

ry
 L

at
en

cy
 (s

)

batch size=15.4 GB
batch size=20.5 GB
batch size=25.6 GB
batch size=30.7 GB
batch size=35.8 GB

(g)

Figure 9: (a) Breakdown results of the delta processing optimization techniques used in iOLAP for C2. (b) �e state sizes saved by iOLAP for

TPC-H.We plot the all-batch total state sizes across all batches for JOIN, and the average andmax (as error bars) per-batch state sizes for other

operators. We also plot the data size shu�ed/broadcasted by the baseline as a reference. (c)�e size of data shipped by the baseline and iOLAP

for TPC-H.We plot the all-batch total data size (iOLAP-Total), and the average andmax (as error bars) per-batch data size (iOLAP-Per-Batch).

(d)-(g)�e relationship of the slack parameter vs. the probability of failure-recovery, the slack parameter vs. the size of non-deterministic set,

the batch size vs. the query latency per mini-batch, and the batch size vs. the total query latency on Conviva workload respectively.

satis�es the userÕs requirements, BlinkDB then has to rerun the full

query from scratch on a larger sample size. On the contrary, iOLAP

just needs to compute a delta update query on the new delta input.

ABM [39] is an analytical bootstrap method which is much faster

than simulation-based bootstrap. �e analytical bootstrap work is

orthogonal to iOLAP. iOLAP can use the analytical bootstrap pro-

posed in analytical bootstrap instead of simulation-based bootstrap

to estimate the variation ranges, achieving better performance.

Incremental View Maintenance. Incremental view maintenance
(IVM) is a very important topic in database view management, and

has been studied for over three decades. IVM focuses on a simi-

lar problem—computing a delta update query when the input data
is updated. Maintaining SQL query answers have been studied in

both the set [13, 14] and bag [18, 25] semantics. [23, 24] proposed aZ-
relation model for annotating relations for incremental view main-

tenance. iOLAP utilizes this relational model to model the propaga-

tion of uncertainties in a relational query. Computing the delta up-

date query has been studied for query with aggregates [25, 31] and

temporal aggregates [37]. However, majority of work in this area

only focuses on simple SPJA queries without nested and correlated

aggregation subqueries. More recently, DBToaster [10] has investi-

gated higher-order IVM and support for nested queries. However,

for queries with nested aggregates, the delta update query obtained
by higher-order IVM is o�en no simpler than the original query.

iOLAP’s delta-maintenance technique doesn’t have this limitation.

[27] models incremental view maintenance as a sample clean prob-

lem, and use the view on a cleaned sample to infer the view on the

whole dataset. While [27] focuses more on how to maintain a sta-

tistically sound sample for a view de�nition, and how to maintain

the view approximately, iOLAP focus on how to exactlymaintain the

result of a query given uniform sample updates.

Data Stream Processing. Data stream processing [6, 22, 30, 35]
combines (1) incremental processing (e.g., sliding windows) and (2)

sublinear space algorithms for handling updates. �ese techniques

mainly rely onmanual programming and composing, and thus have

limited adoption and generalization. More recent works on stream

processing [28, 15, 16] use a progressive model to model incremen-

tal processing. Tuples are augmentedwith progressive intervals, and

operators are aware of progressive intervals. �is model can auto-

matically achieve the delta update rules in Figure 1, but also share

the same performance limitation on complex queries beyond SPJA

queries. In particular, [16] also uses the progressive model to model

di�erent sampling schemes, but still relies on the user to code the

data �ow query in order to deliver meaningful result under sam-

pling, e.g., scaling a SUM aggregate according to the sampling rate. In

contrast, iOLAP provides a meaningful semantics for uniform sam-

pling by default without user intervention, and can be extended to

incorporate strati�ed sampling. �ere has also been work on one-

pass streaming algorithms [11, 36] for single layer of nested aggre-

gate queries that rely on building correlated aggregate summaries

on streams of data. However, it is non-trivial to automatically build

these summaries for queries with arbitrary levels of nesting and/or

user de�ned aggregates. iOLAP on the other hand provides au-

tomatic incremental processing to general SQL queries, including

those with multiple levels of nesting and arbitrary aggregates.

10. CONCLUSION
�is paper presented iOLAP, an incremental OLAP query engine

that uses a mini-batch execution for interactive incremental query

processing. iOLAP uses a novel delta update algorithm that is built

on top of an uncertainty propagation theory. We experimentally val-

idated the e�ectiveness and e�ciency of iOLAP. �e delta process-

ing techniques of iOLAP could bene�t other related �elds in general,

e.g., delta view maintenance and streaming systems.

Acknowledgments
�is research is supported in part by NSF CISE Expeditions Award

CCF-1139158, LBNL Award 7076018, and DARPA XData Award

FA8750-12-2-0331, and gi�s from Amazon Web Services, Google,

SAP,�e�omas and Stacey Siebel Foundation, Adatao, Adobe, Ap-

ple, Inc., Blue Goji, Bosch, C3Energy, Cisco, Cray, Cloudera, EMC,

Ericsson, Facebook, Guavus, Huawei, Informatica, Intel, Microso�,

NetApp, Pivotal, Samsung, Splunk, Virdata and VMware.

11. REFERENCES
[1] Conviva Inc. http://www.conviva.com/.

[2] iOLAP Github repository. https://github.com/amplab/iolap.

[3] Knowledge Management.

http://www.globalgraphics.com/technology/knowledge-

management/.

[4] Spark and SparkSQL. http://spark.apache.org/.

[5] TPC-H Benchmark. http://www.tpc.org/tpch/.

[6] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel, M. Cherniack,

J.-H. Hwang, W. Lindner, A. Maskey, A. Rasin, E. Ryvkina, et al. �e

design of the borealis stream processing engine. In CIDR, volume 5,
pages 277–289, 2005.

[7] S. Acharya, P. B. Gibbons, V. Poosala, and S. Ramaswamy. �e aqua

approximate query answering system. In SIGMOD Record, volume 28,
pages 574–576, 1999.

[8] S. Agarwal, H. Milner, A. Kleiner, A. Talwalkar, M. I. Jordan,

S. Madden, B. Mozafari, and I. Stoica. Knowing when you’re wrong:

building fast and reliable approximate query processing systems. In

SIGMOD, pages 481–492, 2014.
[9] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, and

I. Stoica. Blinkdb: queries with bounded errors and bounded response

times on very large data. In EuroSys, pages 29–42, 2013.
[10] Y. Ahmad, O. Kennedy, C. Koch, and M. Nikolic. Dbtoaster:

Higher-order delta processing for dynamic, frequently fresh views.

PVLDB, 5(10):968–979, 2012.
[11] R. Ananthakrishna, A. Das, J. Gehrke, F. Korn, S. Muthukrishnan, and

D. Srivastava. E�cient approximation of correlated sums on data

streams. IEEE Trans. Knowl. Data Eng., 15(3):569–572, 2003.
[12] B. Babcock, S. Chaudhuri, and G. Das. Dynamic sample selection for

approximate query processing. In SIGMOD, pages 539–550, 2003.
[13] J. A. Blakeley, P.-A. Larson, and F. W. Tompa. E�ciently updating

materialized views. In SIGMOD, volume 15, pages 61–71, 1986.
[14] O. P. Buneman and E. K. Clemons. E�ciently monitoring relational

databases. TODS, 4(3):368–382, 1979.
[15] B. Chandramouli, J. Goldstein, M. Barnett, R. DeLine, J. C. Platt, J. F.

Terwilliger, and J. Wernsing. Trill: A high-performance incremental

query processor for diverse analytics. PVLDB, 8(4):401–412, 2014.
[16] B. Chandramouli, J. Goldstein, and A. Quamar. Scalable progressive

analytics on big data in the cloud. PVLDB, 6(14):1726–1737, 2013.
[17] S. Chaudhuri, G. Das, and V. Narasayya. Optimized strati�ed

sampling for approximate query processing. TODS, 32(2):9, 2007.
[18] S. Chaudhuri, R. Krishnamurthy, S. Potamianos, and K. Shim.

Optimizing queries with materialized views. In ICDE, pages 190–190,
1995.

[19] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, J. Gerth, J. Talbot,

K. Elmeleegy, and R. Sears. Online aggregation and continuous query

support in mapreduce. In SIGMOD, pages 1115–1118, 2010.
[20] F. Dobrian, V. Sekar, A. Awan, I. Stoica, D. A. Joseph, A. Ganjam,

J. Zhan, and H. Zhang. Understanding the impact of video quality on

user engagement. In Proceedings of the ACM SIGCOMM 2011
Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communications, Toronto, ON, Canada, August 15-19,
2011, pages 362–373, 2011.

[21] B. Efron and R. J. Tibshirani. An Introduction to the Bootstrap.
Chapman & Hall, New York, 1993.

[22] T. M. Ghanem, A. K. Elmagarmid, P.-Å. Larson, and W. G. Aref.

Supporting views in data stream management systems. TODS, 35(1):1,
2010.

[23] T. J. Green, Z. G. Ives, and V. Tannen. Reconcilable di�erences.�eory
Comput. Syst., 49(2):460–488, 2011.

[24] T. J. Green, G. Karvounarakis, and V. Tannen. Provenance semirings.

In Proceedings of the Twenty-Sixth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, June 11-13, 2007, Beijing,
China, pages 31–40, 2007.

[25] T. Gri�n and L. Libkin. Incremental maintenance of views with

duplicates. In ACM SIGMOD Record, volume 24, pages 328–339, 1995.
[26] J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online aggregation. In

SIGMOD, pages 171–182, 1997.
[27] S. Krishnan, J. Wang, M. J. Franklin, K. Goldberg, and T. Kraska. Stale

view cleaning: Getting fresh answers from stale materialized views.

PVLDB, 8(12):1370–1381, 2015.

[28] J. Li, K. Tu�e, V. Shkapenyuk, V. Papadimos, T. Johnson, and

D. Maier. Out-of-order processing: a new architecture for

high-performance stream systems. PVLDB, 1(1):274–288, 2008.
[29] X. Liu, F. Dobrian, H. Milner, J. Jiang, V. Sekar, I. Stoica, and

H. Zhang. A case for a coordinated internet video control plane. In

ACM SIGCOMM 2012 Conference, SIGCOMM ’12, Helsinki, Finland -
August 13 - 17, 2012, pages 359–370, 2012.

[30] R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu, M. Datar,

G. Manku, C. Olston, J. Rosenstein, and R. Varma. Query processing,

approximation, and resource management in a data stream

management system, 2002.

[31] T. Palpanas, R. Sidle, R. Cochrane, and H. Pirahesh. Incremental

maintenance for non-distributive aggregate functions. In PVLDB,
pages 802–813, 2002.

[32] N. Pansare, V. R. Borkar, C. Jermaine, and T. Condie. Online

aggregation for large mapreduce jobs. volume 4, pages 1135–1145, 2011.

[33] A. Pol and C. Jermaine. Relational con�dence bounds are easy with

the bootstrap. In SIGMOD, pages 587–598, 2005.
[34] L. Sidirourgos, M. L. Kersten, and P. A. Boncz. Sciborq: Scienti�c data

management with bounds on runtime and quality. In CIDR,
volume 11, pages 296–301, 2011.

[35] H. �akkar, N. Laptev, H. Mousavi, B. Mozafari, V. Russo, and

C. Zaniolo. SMM: A data stream management system for knowledge

discovery. In ICDE, pages 757–768, 2011.
[36] S. Tirthapura and D. P. Woodru�. A general method for estimating

correlated aggregates over a data stream. In ICDE, pages 162–173, 2012.
[37] J. Yang and J. Widom. Incremental computation and maintenance of

temporal aggregates. In ICDE, pages 51–60, 2001.
[38] K. Zeng, S. Agarwal, A. Dave, M. Armbrust, and I. Stoica. G-OLA:

generalized on-line aggregation for interactive analysis on big data. In

SIGMOD, pages 913–918, 2015.
[39] K. Zeng, S. Gao, B. Mozafari, and C. Zaniolo. �e analytical bootstrap:

A new method for fast error estimation in approximate query

processing. In SIGMOD, pages 277–288, 2014.

APPENDIX
A. RELATIONAL ALGEBRA WITH BAG

SEMANTICS
In this paper, we generalize multiset relations to tuple multiplic-

ities that are real numbers. Formally, a multiset relation R maps all
tuples with schema U (we denote this set of tuples as U-Tup) to tu-
ple multiplicities, i.e., R ∶ U-Tup → R. �at is, R(t) represents the
multiplicity of tuple t in relation R. We focus on positive relational
algebra, i.e., queries that can be composed using operators SELECT,

PROJECT, JOIN, UNION and AGGREGATE. Note that we use the SQL

version of PROJECT and UNION which are without duplicate elimi-

nation. Duplicate elimination can be expressed using AGGREGATE,

and thus not explicitly discussed here.

● SELECT: If R ∶ U-Tup→ R and the selection predicate θ maps
each tuple to either 0 or 1, then σθR ∶ U-Tup → R is de�ned
by

(σθR)(t) = R(t) ⋅ θ(t)

● PROJECT: If R ∶ U-Tup → R and ψ i is a tuple function, then

πA i=ψ i
R ∶ U-Tup→ R is de�ned by

(πĀR)(t) = R(t′)

where t.A i = ψ i(t′) for ∀i.
● JOIN: IfR i ∶ U i-Tup→ R for i = 1, 2, thenR1&R2 ∶ U-Tup→ R
is de�ned by

(R1 & R2)(t) = R1(t1) ⋅ R2(t2)

where t i = t on schema U i for i = 1, 2.
● UNION: If R1 , R2 ∶ U-Tup → R, then R1 ∪ R2 ∶ U-Tup → R is

de�ned by

(R1 ∪ R2)(t) = R i(t)

where i = 1 or 2 and t ∈ R i .

● AGGREGATE: If R ∶ U-Tup→ R and Ψ is an aggregate function,
then γĀ,ΨR ∶ U-Tup→ R is de�ned by

(γĀ,ΨR)(t) = ∑
t′=t on Ā

R(t′)

B. OPTIMIZING DELTA UPDATE STATES
�e optimizations of viewlet transformation proposed in

DBToaster [10] can be translated into a set of query rewriting

rules, By applying these query rewriting rules, we can rewrite

a query into an equivalent query, which can reduce the size of

the states maintained by our delta update algorithm proposed in

Section 4.2. Using the query rewriting rules in combination with

our delta update rules, we can achieve the same higher-order view

maintenance ideas as in DBToaster. Below are the equivalent query

rewriting rules of the viewlet transformation rules as listed in

Figure 2 of [10].

● Query Decomposition

γĀB̄ ,Ψ=sum(f1× f2)(Q1 & Q2) =

γĀB̄ ,Ψ3=sum(Ψ1×Ψ2)(γĀ,Ψ1=sum(f1)(Q1) & γB̄ ,Ψ2=sum(f2)(Q2))
(1)

where Q1 and Q2 have no common columns; Ā and B̄ are the
group-by terms of each.

�is optimization rule pushes group-by AGGREGATE below

JOIN, which can help reduce the state of JOIN. For instance,

assumingQ2 has tuple uncertainties, before rewriting, we need
to save all tuples fromQ1 without tuple uncertainty in the state,
which is of size ∣Q1 ∣; in contrast, a�er rewriting, the state is
reduced to all tuples from γĀ,Ψ1=sum(f1)(Q1) without tuple un-
certainty, whose size is the number of distinct Ā in Q1 .

● Factorization and Polynomial Expansion

(Q & Q1) ∪ (Q & Q2) ∪ ⋯ = Q & (Q1 ∪ Q2 ∪ ⋯) (2)

�is optimization rule can pull common subexpressions out

of UNION. When Q1 ,Q2 ,⋯ have tuple uncertainties, instead
of keep Q as the state for each JOIN in the le� hand size of
Equation 2, we only need to save Q as the state for the only
JOIN in the right hand side.

● Input Variables

γĀ,Ψ=sum(f (BC))(σθ(BC)(Q)) =

γ
Ā ,Ψ2=sum(f (B̄C̄))(σθ(B̄C̄)(γĀB̄ ,Ψ1=sum(1)(Q))) (3)

where f , θ are functions over columns; B̄ is the columns in Q
used by f , θ; C̄ is a column that do not appear in Q.
�is optimization rule push AGGREGATE below SELECT, which

can reduce the state of SELECT. If the predicate θ causes tuple
uncertainty, this rewriting rules can compress multiple tuples

in the state that are from Q and with the same ĀB̄ columns
into a single tuple from γĀB̄ ,Ψ1=sum(1)(Q).

● Nested Aggregates and Decorrelation

γĀ,Ψ=sum(f)(σθ(B̄ ,C̄)(QO & QN)) =

γĀ,Ψ2=sum(1)(σθ(B̄ ,C̄)(γĀB̄ ,Ψ1=sum(f)(QO) & QN)) (4)

where QN is a nested non-grouping aggregate subquery; f , θ
are functions over columns; Ā is columns from QO ; B̄ is the

columns in QO used by f , θ; C̄ is the columns in QN used by

θ; QO and QN have no common columns.

�is optimization rule works similarly to the input variable

rule above, by pushing AGGREGATE below SELECT. �is rule

reduces the state of SELECT by compressing multiple tuples

in the state which are from QO & QN and with the same ĀB̄
columns into a single tuple from γĀB̄ ,Ψ1=sum(f)(QO) & QN .

Next we show an example to demonstrate how these rewriting

rules work.

Example 4. Given two relations R (of two columns AB) and S (of
two columns CD), and query

SELECT SUM(A * D)
FROM R, S
WHERE B = C

Assume that both R and S are streamed in, and thus we need to keep
all the tuples seen so far from both R and S as the state of JOIN. By
applyingQueryDecomposition rule, we can rewrite the above query

into γAB ,Ψ3(Ψ1×Ψ2)(γB ,Ψ1=sum(A)(R) &B=C γC ,Ψ2=sum(D)(S)). A�er
the rewriting, for JOIN, we only need to save γB ,Ψ1=sum(A)(R) and
γC ,Ψ2=sum(D)(S)) as the state, which is equivalent to the higher order
view ∆R(S) and ∆S(R) in [10]’s terminology.

C. IMPLEMENTATION OF IOLAP
Given a query, iOLAP automatically rewrites it into a delta query.

�e delta query is a normal SQL query, but enhancing the original

query with error estimation, uncertainty tagging, lineage propaga-

tion, and lazy evaluation. �e rewriting consists of 4 steps:

1. At compile time, the compiler analyzes the query plan, tagging

each attribute (including themultiplicity column) with its cor-

responding uncertainty by following the propagation rules in

Section 4.1.

2. A�er that, we add bootstrap into the query plan to support

error estimation. We use a poissonized bootstrap implemen-

tation proposed in [8]. Speci�cally, we insert columns repre-

senting bootstrap-generated multiplicities a�er scanning the

streamed relations. �ese multiplicity columns take random

values from a Poisson(1) distribution, and are propagated
downstream. Consequently, all the downstream AGGREGATE

operators are modi�ed to use these multiplicity columns, and

thus all the uncertain attributes throughout the plan are du-

plicated to multiple instances, each one corresponding to one

bootstrap trial.

3. A�er modifying the plan for bootstrap, we further add uncer-

tainty propagation and lineage propagation support into the

plan. For each operator that may produce tuple uncertainty,

we insert a new column in its output to keep the tuple un-

certainty, and propagate it to downstream operators. For each

operator whose output has uncertain attributes, we insert the

lineages of the uncertain attributes as columns into its output,

and propagate them through the plan.

4. �e compiler then replaces the operators in the plan with their

online counterparts, and inserts join and project operators to

implement lazy evaluation as described in Section 6.

D. MORE EXPERIMENTS

D.1 End-to-End Performance
We study the performance of iOLAP and HDA by comparing the

query latency used by them to process (1) all the data, (2) a 5% sam-

ple, and (3) a 10% sample. �e results onTPC-HandConviva are de-

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

Q1 Q3 Q5 Q6 Q7 Q11
Q17

Q18
Q20

Q22

Q
ue

ry
 L

at
en

cy
 (s

)

(a)

 0
 200
 400
 600
 800

 1000
 1200

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
C11

C12

Q
ue

ry
 L

at
en

cy
 (s

) iOLAP
iOLAP on 5% data

iOLAP on 10% data
HDA

HDA on 5% data
HDA on 10% data

(b)

 1

 10

 100

 1000

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
C11

C12

S
iz

e
of

 C
ac

he
d

S
ta

te
 (M

B
)

Operators except Join
Join Operator

(c)

 0.1

 1

 10

 100

 1000

 10000

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
C11

C12

S
iz

e
of

 D
at

a
S

hi
pp

ed
 a

t Q
ue

ry
 T

im
e

(M
B

)

Baseline
iOLAP-Total

iOLAP-Per-Batch

(d)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Q11
Q17

Q18
Q20

Q22

P
ro

ba
bi

lit
y

of
 F

ai
lu

re
-R

ec
ov

er

slack=0
slack=0.5

slack=1
slack=1.5

slack=2
slack=2.5

(e)

 0

 5000

 10000

 15000

 20000

 25000

Q11
Q17

Q18
Q20

Q22

A
vg

 #
 o

f T
up

le
s

R
ec

om
pu

te
d

P
er

 B
at

ch

slack=0
slack=0.5

slack=1
slack=1.5

slack=2
slack=2.5

(f)

Figure 10: (a) and (b) �e query times of iOLAP and HDA to deliver approximate results on all the data, as well as 5% and 10% samples for

TPC-H and Conviva workloads respectively. (c) �e state sizes saved by iOLAP for Conviva. We plot the all-batch total state sizes across

all batches for JOIN, and the average and max (as error bars) per-batch state sizes for other operators. (d) �e size of data shipped by the

baseline and iOLAP for Conviva. We plot the all-batch total data size (iOLAP-Total), and the average and max (as error bars) per-batch data

size (iOLAP-Per-Batch). (e) and (f) �e relationship of the slack parameter vs. the probability of failure-recover, and the slack parameter vs.

the size of non-deterministic set on TPC-H respectively.

picted in Figure 10(a) and 10(b) respectively. As we can see, for sim-

ple SPJA queries, such as TPC-H Q1, Q3, Q5, Q6, Q7, Q11, Q22, and

Conviva C3, C5, C11, C12, iOLAP and HDA have comparable perfor-

mance. For complex queries with nested subqueries, HDA’s overhead

quickly accumulate up: �e query latencies of HDA on 10% samples

have already exceeded those of iOLAP.Whenprocessing all the data,

HDA took much longer time than iOLAP. Actually most of the com-

plex queries did not �nish in a reasonable time, and the bars get cut

o� in the �gures.

D.2 Memory Utilization of iOLAP
We study the memory overhead caused by keeping states for var-

ious operators on Conviva. �e results are plotted in Figure 10(c),

which shows that all the operators, including JOIN, keep only a few

hundreds of MBs states across all iterations.

We study the data footprint overhead of the bootstrap and lineage

propagation of iOLAP on Conviva, as shown in Figure 10(d). Be-

cause the Conviva dataset has a single fact table, all Conviva queries

fall into the category of queries that only ship AGGREGATE results .

It is clear that iOLAP-Total has a < 5GB overhead compared to the

baseline. And the data footprint of iOLAP-Per-Batch is 1-2 orders of

magnitude smaller than that of the baseline.

D.3 Parameter Tuning
We experiment with di�erent slack parameter settings to see how

it impact the probability of failure-recovery and the size of non-

deterministic set on the TPC-H workload. We plot the results in

Figure 10(e) and 10(f). Similar to the results on Conviva, with the

slack increasing, the probability of failure-recovery quickly decrease

to 0; in contrast, the size of non-deterministic sets increases slowly.

	Introduction
	Query Model
	Overview
	Limitations of Existing Approaches
	Our Approach
	Supported Queries

	Uncertainty and Delta Update
	Uncertainty Dichotomy and Propagation
	Delta Update Algorithm
	Optimizing Delta Update

	Tuple Uncertainty Partition
	Discovering Certainty in Uncertainty
	Propagation of Non-Deterministic Sets

	Lineage and Lazy Evaluation
	Lineage Propagation
	Lazy Evaluation

	Implementation
	Experimental Study
	End-to-End Performance
	Delta Processing of iOLAP
	Memory Utilization of iOLAP
	Parameter Tuning

	Related Work
	Conclusion
	References
	Relational Algebra with Bag Semantics
	Optimizing Delta Update States
	Implementation of iOLAP
	More Experiments
	End-to-End Performance
	Memory Utilization of iOLAP
	Parameter Tuning

