
Record Placement Based on Data Skew Using Solid
State Drives

Jun Suzuki?1, Shivaram Venkataraman2, Sameer Agarwal2, Michael Franklin2, and
Ion Stoica2

1 Green Platform Research Laboratories, NEC
j-suzuki@ax.jp.nec.com

2 University of California, Berkeley
{shivaram@eecs,sameerag@eecs,franklin@cs,istoica@eecs}.berkeley.edu

Abstract. Integrating a solid state drive (SSD) into a data store is expected to
improve its I/O performance. However, there is still a large difference between
the price of an SSD and a hard-disk drive (HDD). One of the methods to offset
the increase in cost of consisting devices is to configure a hybrid system using
both devices. In such a system, a common method to decide the placement of
data records is based onreference locality, i.e.,placing the frequently accessed
records in a faster SSD. In this paper, we propose an alternative that focuses on
data skew by storing records with values that appear less often in an SSD while
those that do more in an HDD. As we will show, this enhances the performance of
fetching records using multi-dimensional indices. When records are fetched using
one of the indices targeted for optimization, records stored in an SSD are likely
be retrieved using random access, while those stored in an HDD using sequential
access. Given the method does not rely on reference locality, its performance
is stable between first and second accesses and it provides a performance gain
even when a host memory is large enough to contain the entire working set of
the application. Our implementation and experiments show that storing just 20%
records in an SSD achieves up to 76% of the maximum reduction that would
otherwise be obtained when all the records are stored in an SSD.

Keywords: SSD, index, hybrid data store, data skew

1 Introduction

Integrating SSDs into data stores has been a subject of much attention given their I/O
performance is higher than that of HDDs. HDDs on the other hand have been widely
used as secondary storage of data stores and their capacity has been doubling every 18
months [6]. However, their increase in I/O bandwidth has been slow and is currently
just above 100 MB/s. SSDs on the other hand, keep doubling their bandwidth every 36
months. In addition, since they do not involve a mechanical component, their random
access performance is better by more than two orders of magnitude as compared to an
HDD.

? Visiting scholar at University of California, Berkeley when this work was done.



2 Jun Suzuki et al.

Although performance of SSDs are attractive, there is still a large difference be-
tween the prices of SSDs and HDDs. In addition, their performance in sequential ac-
cess is not so different as that in random access (and is even comparable when RAID is
applied to HDDs). Therefore, it is reasonable to configure a hybrid system of SSDs and
HDDs, and adopt a data placement method that maximizes system I/O performance.

Some of the data placement methods have been proposed for hybrid database ap-
plication [1–3, 9]. These methods are based on reference locality of data stored in a
database. By storing frequently accessed data in an SSD, system I/O performance is
improved nonlinearly to the ratio of the size of data stored in an SSD and in an HDD.
Some of them also distinguish random access from sequential access, and give ran-
domly accessed data priority to be stored in an SSD. The performance gain obtained
from these methods depends on both the data access patterns and the size of the work-
ing set of application. As the hottest data is cached in the buffer pool of the host, in
order to obtain a performance gain, the working set needs to contain warmly accessed
data that is large enough to be spilled off from the host memory and stored in an SSD.

In this paper, we propose another data placement method among SSDs and HDDs
by focusing on data skew (calledSkew-Based Data Placement, SDP, hereafter). Data
skew is known to be one of general characteristics that frequently appear in stored data
[5]. SDP uses it to obtain performance enhancement nonlinear to the ratio of the size of
data stored in an SSD. It provides performance enhancement from the first time when
data are accessed. In addition, it provides nonlinear gain even if the host memory is
large enough to contain the working set of application, and other cold data is accessed
less frequently and uniformly. The application of SDP is for data that is rarely updated,
– such as that for log analysis.

In SDP, the target columns for which the placement of records are optimized are
given by an administrator or an overlying application. It then decides record placement
so that the performance of fetching records using indices on any of those columns is
enhanced. SDP configures a composite key consisting of the target columns. It then
decides whether the records are to be stored in an SSD or in an HDD depending on
the value of the composite key. To optimize the overall placement, data skews in all of
the target columns are considered simultaneously. This process is formulated as integer
linear programming (ILP) problem. With SDP, records stored in an SSD are likely to
be retrieved using random access, while those stored in an HDD are likely to be fetched
using sequential access. Concentrating random accesses to an SSD enables performance
enhancement nonlinear to the ratio of records stored in an SSD and in an HDD.

We implemented a prototype using MySQL and evaluated it using a customer statis-
tics table provided by an internet company, Conviva Inc. We show that by storing 20%
of records in an SSD we can achieve up to 76% of the maximum reduction that would
otherwise be obtained when all the records are stored in an SSD.

The rest of the paper is organized as follows– comparison of an SSD and an HDD
is given in section 2, the data skew of the table used in the prototype evaluation is dis-
cussed in section 3, the proposed SDP is described in section 4, the implemented proto-
type and its evaluation results are presented in section 5, the related work is discussed
in section 6, and finally we conclude in section 7.



Record Placement Based on Data Skew Using Solid State Drives 3

2 Comparison of SSD and HDD

An SSD is generally composed of an SSD controller and multiple flash memory pack-
ages [4]. An SSD controller is connected to a host using some host connection interface
such as SATA or PCI Express. It transforms block I/O requests from a host to read
and write I/O operations to the flash memory packages. These I/O operations are paral-
lelized among multiple packages to enhance performance of an SSD.

Table 1 compares the performance [7, 8] and price [6] of a SATA SSD and an HDD.
Here, we discuss read performance since that is the focus of the proposed method.
Because an SSD does not contain a mechanical component and I/O requests are served
in parallel among flash packages, its random access performance is better by more than
two orders of magnitude than that of an HDD. On the other hand, the difference of
sequential access is not as much as that of random access. When the prices of the two
devices are considered, combination of RAID method and HDDs is a reasonable choice
if majority of I/O traffic of application are performed in sequential access.

A data placement method of a hybrid system of SSDs and HDDs need to consider
these performance characteristics. Performance gain obtained by serving random ac-
cesses using an SSD is larger than that obtained by serving sequential accesses. There-
fore, to make the best of SSDs, data should be placed so that random accesses be served
by SSDs while sequential accesses be done by HDDs.

Table 1.Comparison of SSD and HDD. *Calculated using read seek average time.

Device
Random 4K
Read IOPS

Sequential
Read BW Price

SSD 41,000-89,000500-550 MB/s 1 $/GB
HDD >91-118* 125-156 MB/s 0.05-0.07 $/GB

3 Skew in Data Distribution

It is widely known that in a column of a table, the numbers of entries of values appearing
in that column are frequently not equal and have skew. For example, if a column is on
places of residence of customers, there are many entries of big cities such as New York
and Los Angeles. On the other hand, there are many other smaller cities which appear
less often. Therefore, in general, there is a small number of values that often appear in
a column while many others do less often.

Figure 1 shows the skew of the table we used in our prototype evaluation. It is the
table on customer statistics of an Internet company, Conviva. It has 104 attributes and
we investigated the skew on the values of the combination of the four columns, namely
the endedFlag, customerId, country, and city. They are often used to select records in
the company for data analysis. The figure shows the cumulative distribution function of
the number of the occurrence of each value appearing in the table and that of its storage
consumption. It shows that 90% of values just appear in 6% of records in the table,



4 Jun Suzuki et al.

while 95% of values does in 10%. Therefore, 90% of records are occupied by just 5%
of major values.

Fig. 1. Cumulative distribution function of the number of the occurence of each value appearing
in a table.

4 Optimizing Data Placement

4.1 Skew-Based Data Placement (SDP)

SDP uses the data skew appears in records stored in a table. Unlike conventional meth-
ods, it does not depend on the skew or locality of reference of application.

The method is intuitively illustrated using Figure 2 (a). A table which is used as
an example to explain the method has two columns: customer ID and city. Although
the cardinality of the customer ID is three, because of its data skew, the number of
occurrence of ”1” is larger than that of ”2” and ”3”. In the same way, on the city column,
the number of occurrence of ”New York” is larger than that of ”Berkeley”, because New
York is a much larger city than Berkeley.

When records, which are rows of the table, are sorted according to one column to
optimize fetching records using its index, the performance of fetching records using an
index on another column is not generally optimized. In a case considered here, records
are fetched using either the index on the customer ID or the city. Figure 2(a) shows the
order of records in the table that are sorted using a composite key of the customer ID
and the city. Because the customer ID is the first column in the composite key, sorted
records are clustered on it. In other words, records that share an identical value of the
customer ID are continuously placed in the table. When clustered records are stored
in an HDD, fetching those records are performed using sequential access. An HDD
provides good performance for sequential access. On the other hand, when records are
fetched using the index on the city– as the records that share an identical value of the
city are separated in the table– fetching is performed using random access. When the
table is stored in an HDD, fetching records that correspond to ”New York” requires
three seeks. Because seek time of an HDD is considerably large, the performance of
fetching records using the index on the city is much worse than that of the customer ID.



Record Placement Based on Data Skew Using Solid State Drives 5

SDP solves this kind of cases and enhance the performance of fetching records using
indices in a multi-dimensional way. It focuses on records with less frequent values and
stores them in an SSD. In the example of Figure 2 (a), when it is allowed to move up
to three records from an HDD to an SSD, moving records with the customer ID of ”2”
and ”3” reduces the number of seeks to fetch the records with ”New York” from three
to one. This means that by moving 33% of records of the table, the number of seeks is
reduced by 66%. In this way, by moving records with less frequent values, SDP reduces
the number of seeks made to an HDD nonlinearly to the ratio of the size of records
stored in an SSD and an HDD.

Figure 2 (b) schematically shows the reduction of the cardinality of the composite
key of records stored in an HDD, The horizontal and vertical axises correspond to the
columns consisting the composite key. Although the number of axises or columns in
the composite key is two for the explanation purpose, SDP is not limited to it. Each
square in Figure 2 (b) corresponds to a possible value of the composite key which are
combination of values in each column. The colored squares represent that there are
records with the corresponding value. By storing less frequent values of the composite
key in an SSD, large number of colored squares moves to an SSD. As a result, an
HDD stores a small number of colored values that has many entries. This results in
the nonlinear reduction of the number of seeks in fetching records using indices of the
columns in the composite key except for the first column.

Fig. 2.Enhancement of fetching records using data skew.

4.2 Optimization Formulation

In this subsection, the optimization of data placement between an SSD and an HDD is
formulated. It is supposed that data are stored in a single table, and records are retrieved
using either of multiple indices. Therefore, the motivation of the data placement is to
enhance the performance of fetching records using indices in multi-dimensional way.



6 Jun Suzuki et al.

It is also shown that the optimization of data placement is formulated as integer
linear programming. I/O cost to fetch records is the optimized function under the con-
straint of SSD resources. Because integer linear programming is known as an NP-hard
problem, we used greedy method in our prototype described in section 5 to perform
optimization calculation.

Table 2.Variables to formulate I/O cost

Variable Explanation
Ni cardinality of columnci

Ki cardinality of combinatorial column (c1, c2, ...,ci)
Fi the number of fragmentation of columnci in HDD
BS S D, BHDD bandwidth of SSD or HDD
SS S D, SHDD size of data stored in SSD or HDD
Tseek average seek time of HDD
yi(x1, x2, ..., xi) whether records with (x1, x2, ..., xi) are stored in SSD
s(x1, x2, ..., xn) total size of records with combinatorial values (x1, x2, ..., xn)
CS S D constraint of SSD consumption

To formulate the I/O cost, the variables shown in table 2 are introduced.Fi repre-
sents the number of fragments that include records with the same value on columnci in
an HDD.i represents the order within the target columns that are optimized for fetching
records. In the example shown in Figure 2, if the whole table is stored in an HDD,F2

is five because ”New York” appears in three fragments while ”Berkeley” does in two.
The average I/O cost to fetch records using an index ofci by specifying a value in

the column is given by dividing total I/O cost to fetch all records by the cardinality of
the column. The total I/O cost is the sum of the I/O cost to fetch records reside in both
an SSD and in an HDD. We ignored the latency of I/O requests other than the seek time
of an HDD, because our interest is the difference of the cost between the two devices.
Then, the average I/O cost is described as

1
Ni

(
TseekFi +

SHDD

BHDD
+

SS S D

BS S D

)
. (1)

When the size of an SSD that can be used to store records of a table is given as the
constraint of the data placement optimization, the second and third terms in formula (1)
are constant. Then, only the first term varies depending on the placement of records.
Therefore, we formulate the I/O cost to be optimized by linearly combining the costs of
each target column as ∑

i

Ri
Fi
Ni

(2)

Here,Ri adjusts the relative importance among the target columns, andTseekis included
into it. We introduce two parameters,yi ands; yi(x1, x2, ..., xi) ∈ {0,1} denotes whether
records with the combination of the values in target columns of (x1, x2, ..., xi) are stored
in an SSD;s(x1, x2, ..., xn) denotes the total size of the records with the combination



Record Placement Based on Data Skew Using Solid State Drives 7

of the value of (x1, x2, ..., xn). n denotes the number of columns to be optimized and
1 ≤ i ≤ n. In SDP, records which share the same combination of the value (x1, x2, ..., xn)
are stored either in an SSD or an HDD. Then, the next relation holds foryi andyi+1.

yi+1(x1, x2, ..., xi , xi+1) − yi(x1, x2, ..., xi) = 0 (3)

That is, foryi(k1, k2, ..., ki) of the specific combination of constants of (k1, k2, ..., ki) to
be one,yi+1(k1, k2, ..., ki , xi+1) needs to be one for all possible value ofxi+1. Then, the
number of fragmentsFi in an HDD is described as

Fi = Ki −
∑
x1

∑
x2

...
∑

xi

yi(x1, x2, ..., xi). (4)

The constraint of the consumption of SSD resources is described as∑
x1

∑
x2

...
∑
xn

s(x1, x2, ..., xn)yn(x1, x2, ..., xn) ≤ CS S D. (5)

Substituting formula (4) into formula (2) gives the I/O cost that are described with
variablesyi(x1, x2, ..., xi). Then, calculating the combination ofyi(x1, x2, ..., xi) which
minimizes the I/O cost under the constraints of formula (3) and formula (5) is an integer
linear programming sinceyi(x1, x2, ..., xi) ∈ {0,1}. An integer linear programming is
known as an NP-hard problem.

5 Prototype Evaluation

5.1 Implementation

To evaluate SDP, we implemented a prototype shown in Figure 3 using MySQL. It is
consisted of two layers: data placement optimizer and MySQL. The data placement
optimizer optimizes the placement of records in an original table between an SSD an
HDD. An application program is supposed to create individual index on each of the tar-
get columns and use either of them to fetch records by specifying value on that column.

The data placement optimizer takes the statistics on the occurrence of values in the
target columns. It then decides whether records with each combination of values are
stored in an SSD or in an HDD. It uses the data placement optimization explained in
section 4 in the constraint of the SSD resources given by an administrative interface.
It also creates an additional column,ssd f lag ∈ {0,1}, to an original table. The flag
denotes whether a record containing a flag is stored in an SSD or not.

Because the calculation of the data placement optimization is NP-hard, greedy
method is used. It continued choosing the next combination of values that reduced the
I/O cost per SSD consumption described by formula (2) most until the total consump-
tion of an SSD reached the given constraint.

The range partition function of MySQL 5.6 was used to divide storing records be-
tween an SSD and an HDD. Records with ssdflag of ”1” were stored in an partition
made in the directory where an SSD was mounted while ones with ssdflag of ”0” were
stored in the HDD directory.



8 Jun Suzuki et al.

In the evaluation, SSD resources consumed by the indices and the ssdflag col-
umn was ignored because it was small compared to the original data table that had
104 columns. We used a single host with two 8-core xeon CPUs and 128-GB mem-
ory. It contained both a SATA SSD (Intel 520 series) and a SATA HDD (Seagate
ST91000640NS Constellation.2) that were used for SDP evaluation.

Fig. 3.Prototype implementation.

5.2 Evaluation

We performed two kinds of experiments. In the first experiment, the columns that were
frequently used to select records in the data analysis in an Internet company, Conviva
were selected as the target of optimization. However, because these columns were cor-
related, records that shared the same value in the target column were not fragmented
so much and the gain of the performance by SDP was limited. Therefore, in the sec-
ond experiment, different columns were selected and the size of records was halved to
artificially increase the affect of seek of an HDD to the system performance. The table
used in the experiment is the same as the one analyzed in section 3 that had 1,062,701
records, each record consisted of 104 columns, and the size of each record was about
2 KB. For the simplisity of evaluations, columns that were not in the interests were
defined as a single large blob column.

In the first experiment, data placement was optimized on the columns that were
frequently used for analysis. Table 3 shows the cardinality of each of the four columns
chosen to be optimized, namely endedFlag, customerId, country, and city. It also shows
the cardinality of their combination.

In SDP, records in an SSD and an HDD are sorted using a composite key that is
consisted of the target columns for optimization. Except for the first column in the com-
posite key, how much the records sharing the same value in a column are fragmented
depends on the cardinality of its preceding columns. Therefore, to minimize the frag-
mentation of records in an HDD, the order of columns in a composite key is decided
in ascending order of their cardinality; in the first experiment, the composite key was
(endedFlag, customerId, country, city).



Record Placement Based on Data Skew Using Solid State Drives 9

Table 3.Cardinality of each and composite column used in the experiments.

Key Cardinality
endedFlag 2
customerId 7
country 179
city 6086
connType 12
isp 130
(endedFlag, customerId) 12
(endedFlag, customerId, country) 462
(endedFlag, customerId, country, city)10813
(city, customerId, connType, isp) 19587

The performance of SDP was evaluated by the average cost of fetching records
selecting single value on the focused column. Figure 4 shows the evaluated performance
on the select queries on city, which was the last column in the composite key. The results
show that by storing 20% of records in an SSD, the average response time of the queries
was reduced by 52% of the maximum reduction which was obtained when all records
were stored in an SSD. On the other hand, the reduction of the response time of 90th
percentile was 75% of the maximum reduction.

The results of city in Figure 4 also shows that the response time of the 90th per-
centile is faster than that of the average. This is caused by the data skew in the city
column; a small number of major cities in the column largely increases the average
response time. In addition, the reduction of the response time of the 90th percentile is
larger than that of the average. We consider this is due to the difference of the ratio of
the seek and read time between major and minor values. On major values, because there
are many records, the ratio of read time is larger than that of minor values. Therefore
the performance gain by reducing the number of seeks could be suppressed for major
values.

Fig. 4.Query response time on city and country in the first experiment.

In the first experiment, however, the nonlinear performance enhancement was not
obtained in the preceding columns to the city in the composite key. Figure 4 also shows



10 Jun Suzuki et al.

the performance of the queries on country, which was the third column in the composite
key. Although the response time of the 90th percentile is slightly improved nonlinearly,
the reduction of the average response time is linear. This shows that on the preceding
columns including the country, the bottleneck of the performance to fetch records is the
bandwidth of the sequential read of the HDD. Therefore, by storing some of records in
an SSD, the performance is improved linearly and its slope is decided by the difference
of the bandwidth of the SSD and the HDD.

(a) Query response time (b) CDF

Fig. 5. (a) Query response time and (b) its cumulative distribution function (CDF) on city in the
second experiment. Legend in CDF is the ratio of records stored in SSD.

In the second experiment, the different columns were chosen from the first experi-
ment and the length of the records was halved to increase the affect of the seek of an
HDD. The target columns for optimization were customerId, connType, isp, and city,
and the composite key was configured using these columns in this order. However, also
in this case, the bottleneck for all the column except the city was the read bandwidth
of the HDD. Therefore, the order of the column was changed and the composite key
of (city, customerId, connType, isp) was also tried. In this case, the bottleneck for all
of the column was the seek time of the HDD. The cardinality of regarding columns are
shown in Table 3.

Figure 5 (a) shows the query response time on city when (customerId, connType,
isp, city) was used as the composite key. Because the affect of the seek time is increased
from one in the first experiment, by storing 20% of records, 76% of maximum reduction
that is obtained when all records are stored in the SSD is obtained. Figure 5 (b) shows
the cumulative distribution function of the query response time on the city. When the
ratio of the records stored in an SSD is increased, the response time rapidly approached
to the performance with the maximum reduction of response time.

Next, when (city, customerId, connType, isp) was used as the composite key, the
nonlinear reduction of query response time was obtained for all of the target columns.
Figure 6 shows the query response time on the connType which was third in the com-
posite key and the isp which was the last. When 20% of records are stored in an SSD,
the average response time of the select queries is reduced by 55% and 68% of the max-
imum reduction for the connType and the isp, respectively.



Record Placement Based on Data Skew Using Solid State Drives 11

Fig. 6.Query response time on connType and isp in the second experiment.

These evaluation results showed that SDP provides nonlinear reduction of query
response time against the ratio of the size of records stored in an SSD and an HDD.
It also reduces the response time in multi-dimensional way. How large the nonlinear
performance gain is depends on several factors such as the cardinality, the correlation,
and the record size of the data stored in a system.

6 Related work

There are several methods that have been proposed for hybrid database application.
These methods can be broadly divided into two categories– ones that handle both an
SSD and an HDD as different devices which configure the same storage tier [1] and
others that use an SSD as an intermediate cache device between a host memory and an
HDD [2, 3, 9]. The difference between the two is that the former provides increased I/O
performance when data are accessed for the first time, while the latter does so from the
second time. However, the former needs profiling of application to decide as to what
data should be stored in an SSD which the latter does not.

All of these methods are based on reference locality of data stored in a database.
By storing frequently accessed data in an SSD, system I/O performance is improved
nonlinearly to the ratio of the size of data stored in an SSD and in an HDD. On the
other hand, in this paper, we propose an alternative that focuses on data skew by storing
records with values that appear less often in an SSD while those that do more in an
HDD.

7 Conclusions

In this paper, we proposed SDP to enhance the performance of fetching records stored
in a hybrid data store of SSDs and HDDs using indices on different columns. It is based
on the data skew of stored data, and provides nonlinear performance gain to the ratio
of records stored in SSDs and HDDs. Because SDP uses the data skew, unlike caching,
it provides stable performance enhancement between first and second data accesses. It
can also enhance performance even when a system memory is large enough to contain
the working set of application. The evaluation of the implemented prototype using the
data from the internet company showed that the performance of fetching records using



12 Jun Suzuki et al.

different indices are simultaneously enhanced. By storing 20% of records, up to 76%
of the maximum reduction of query response when all records are stored in an SSD is
obtained. Our future work includes comparing the performance of SDP and others that
are based on reference locality, and evaluation using real queries that are used in the
data analysis.

References

1. M. Canim, G. A. Mihaila, B. Bhattacharjee, K. A. Ross, and C. A. Lang: An Object Placement
Advisor for DB2 Using Solid State Storage. In: VLDB 2009, pp. 1318-1329

2. M. Canim, G. A. Mihaila, B. Bhattacharjee, K. A. Ross, and C. A. Lang: SSD Bufferpool
Extensions for Database Systems. In: VLDB 2010, pp. 1435-1446

3. J. Do, D. Zhang, J. M. Patel, D. J. DeWitt, J. F. Naughton, and A. Halverson: Turbocharging
DBMS Buffer Pool Using SSDs. In: SIGMOD 2011

4. N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. Manasse, and R. Panigrahy: Design
Tradeoffs for SSD Performance. In: 2008 USENIX Annual Technical Conference (ATC’08),
pp. 57-70

5. C. B. Walton, A. G. Dale and R. M. Jenevein: A Taxonomy and Performance Model of Data
Skew Effects in Parallel Joins. In: VLDB 1991, pp. 537-548

6. I. Stoica: Warehouse-Scale Computing and the BDAS Stack,http://ampcamp.berkeley.

edu/amp-camp-one-berkeley-2012/

7. Intel SSD Product Comparison,http://www.intel.com/content/www/us/en/
solid-state-drives/solid-state-drives-ssd.html

8. Seagate Desktop HDD,http://www.seagate.com.edgekey.net/staticfiles/docs/
pdf/datasheet/disc/desktop-hdd-data-sheet-ds1770-1-1212us.pdf

9. X. Liu and K. Salem: Hybrid Storage Management for Database Systems. In: VLDB 2013,
pp. 541-552


